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Abstract

Fluctuations in atomic positions are classified as being either (i) “smooth”, consisting of
long wavelength phonons, or (ii) “singular”, arising from topological defects [1]. This
classification has led to a deeper understanding of many properties of crystalline solids
such as melting [1, 2], and mechanical failure of solids under external loads [3, 4].
However, it is not optimal to obtain a linear combination of phonons equivalent to the
prevailing local lattice defects (describing local lattice defects in terms of phonons is
clearly not optimal). Further, in amorphous solids, the lack of long-range structural
order makes it hard to distinguish between smooth and singular displacements. In
a recently introduced, alternative, way of classifying fluctuations [5], any set of dis-
placement of particles away from some specified reference configuration is projected
onto two mutually orthogonal spaces viz. affine and non-affine. The affine modes in-
volves continuously varying, elastic displacements, and can be written as a linear trans-
formation of this reference configuration. Whereas the non-affine modes, consists of
displacements which are not linear transformations and are related to defects in cer-
tain two dimensional crystalline (mono-atomic) lattices [6]. In addition, the likelihood
of a particular defect can also be estimated from the excitation spectra of non-affine
modes [6, 7]. Earlier work in this direction was restricted to two dimensions and sim-
ple monatomic lattices. Physical systems in nature, however, is three-dimensional and
has multi-atom basis. Therefore, non-affine modes for these systems need to be deter-
mined and studied.

In this thesis, we generalise this projection formalism to the lattices with multi-atom
basis in d-dimension. The statistics of non-affine displacements due to thermal fluctu-
ation is then analyzed in a variety of two-dimensional lattices such as square, honey-
comb, and kagome. Where in three-dimensions, we limit our analysis to the crystals
from cubic family. In each case, we demonstrate that the non-affine modes are indeed
the precursors to the commonly observed lattice defects. Additionally, deformations
such as slips or stacking faults can also be understood using these modes. We further
test the robustness of our results to the extent of different parameters and inter-particle
interactions. Our study reveals that the prevalent non-affine modes lead to particle
rearrangement and may not maintain the topology of the local neighbourhood of a
particle; a finding that has significant implications for the stability of lattices.
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Equipped with this knowledge, we devise an experimental protocol to stabilise (i)
lattice of colloidal particles, and (ii) patterns of active robotic swarm. This is accom-
plished in an energy efficient way by imposing feedback controlled “non-affine forces”.
These restoring forces alter the particle’s arrangement in order to minimise non-affine
fluctuations while allowing only affine transformations. Moreover, our stabilisation
procedure/algorithm needs no awareness of inter-particle interactions or the particu-
lars of underlying noise but the details of instantaneous and reference configuration.
In colloids, the resulting colloidal lattice is translationally invariant and retains all the
low-energy phonon modes. We further note that the non-affine forces depends upon
the reference structure, therefore, the symmetry of the lattice can be changed at will. In
robotic swarms, the pattern obtained is stable and as a whole can be translated without
interfering with the stabilisation algorithm. The agents are not forced to sense, difficult
to measure, environmental parameters such as local velocity of air or water in order to
stabilise the swarm. A novel outcome of this study is that by maintaining the structure
of robotic swarm, the statistics of underlying flow field can be determined solely from
non-affine forces. As non-affine forces are a-priori known, no extra measurement on
the turbulent field is required to obtain the statistics. Therefore, such techniques will be
useful in studying the turbulent flow where the direct measurement of flow velocities
is difficult.

We conclude the thesis with a list of possible future applications of the principles
presented in this thesis.
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Introduction
1

1.1 Order and fluctuations in systems of particles

Ordered arrangements of atoms are quite common in nature, For example, a crystalline
solid is formed from the liquid when translation and orientation symmetries are broken
as a result of a thermodynamic phase transformation [1]. Similar liquid to crystalline
phase transitions are observed when macroscopic colloidal particles spontaneously ar-
range themselves into ordered crystals [8–11]. Even in an amorphous solid, such as a
glass [12–15], where no obvious order is discernible, one may still argue that transla-
tional and orientational degrees of freedom are frozen, giving rise to a fixed, though
random, arrangement of atoms. Ordering, in some cases may also have a purely dy-
namic, as opposed to thermodynamic origin such as in active, ordered flocks of birds,
schools of fishes or swarms of insects or even inanimate objects such as colloidal parti-
cles acted upon by non-equilibrium forces [16–19]. Clearly, in the latter case, the role
of “atoms” are being played by the active particles (birds, fishes, insects etc.). In this
thesis, we shall interchangeably use the word atom or particle to describe the discrete
entities whose ordering is of interest.

In all of these cases, fluctuations tend to destabilise order. At any non-zero temper-
ature, atomic fluctuations in the crystalline solid tend to restore the symmetries that
gave rise to crystallisation [1]. This is true even for dynamically ordered structures, for
example active flocks or swarms, where random fluctuations of direction of the velocity
arising either from internal noise or coupling to external fluctuating fields, such as a
turbulent flow of wind or water, introduces disorder [20].

Within the current accepted paradigm, one classifies fluctuations in atomic positions
as being either “smooth” or “singular”. The former comprise long wavelength, smooth
variations of the elastic displacements and density fields [21, 22] where the local con-
nectivity or the local neighbourhood of atoms is not disturbed significantly. In con-
trast, the latter are defects, where the displacement becomes discontinuous [3, 23, 24]
leading to topological changes in the local neighbourhood. Such a classification has
proved to be immensely useful in understanding many commonly observed properties
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of solids [2] as well as melting [1] and failure of solids in response to external mechan-
ical loads [3, 4]. This viewpoint has also been extended with some success towards
understanding the mechanical properties of amorphous solids [25]. However, in con-
trast to crystals, the lack of long ranged structural order in amorphous solids precludes
a clear distinction between continuous and discontinuous displacements [25–29]. In
active flocks too, the interaction between smooth and neighbourhood changing, singu-
lar, displacement fluctuations have a profound effects on the orientation and stability
of the flock [20].

In this thesis, we study a different way of classifying fluctuations of the displacement
field in particle systems [5–7, 30–40] which, has produced many insights on the na-
ture of ordering. We begin with an idea first used to study mechanical deformation
in glasses [41], it was shown that any set of atomic displacements of an atom and its
neighbors, within a specified “coarse graining” region, may be decomposed into two
mutually orthogonal sub-spaces using a well defined projection formalism [5–7]. The
affine component of these displacements represents homogeneous linear transforma-
tions of a reference configuration within the coarse graining volume. Ignoring trivial
uniform displacements, these are isotropic expansion, shear strains and local rotations.
Since, in general, not all displacements can be described completely by these linear
transformations, inevitably, a non-affine component remains. By construction, the affine
and the non-affine parts of the displacements are linearly independent [5]. Conjugate
fields may be defined, which enhance or suppress each part independently of the other.
The affine displacements couple to local stresses (and torques) while the non-affine
component of the displacement couples to a new “non-affine” field [6, 35–37].

Enhancing non-affine fluctuations by increasing temperature, applying large strains
or the non-affine field leads to the creation of defects [6, 31, 37]. Indeed, atomic
fluctuations that act as precursors to the formation of defects such as dislocation dipoles
have been shown to be the most prevalent, though not the sole, non-affine displacement
even within a small oscillation, harmonic, approximation [6, 31]. On the other hand,
one may also suppress non-affine displacements by changing the sign of the conjugate
field. The system of particles is now structurally stabilised such that the formation of
defects and consequent changes in the local neighbourhoods surrounding every atom
is precluded. We show in this thesis that this is sufficient, under certain conditions,
for stabilising the system of particles into any desired lattice symmetry regardless of
inter-atomic interactions among the particles.

The rest of this chapter is organised as follows. In the next section (Section 1.2) we
introduce the two main categories of particulate systems for which details of atomic
displacement fluctuations may be extracted viz atoms in a computer or experiments
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with colloidal particles. A practical reason for studying displacement fluctuations is that
it allows one to estimate elastic moduli through the fluctuation response theorem [1].
We briefly review these attempts in Section 1.3. This is followed by an overview and
summary of the rest of the thesis in Section 1.4.

1.2 A crystal in a box: statistics of atomic
fluctuations

Till the middle of the last century, our knowledge of displacement fluctuations of atoms
in a solid was at most indirect, based on, say, measured Debye-Waller factors of X-
ray diffraction peaks for crystals [1]. The relative intensity of the diffraction peaks as a
function of the wave number gives a measure of the mean squared fluctuations of atoms
about their mean positions. The mean positions of atoms in solids became observable
due to the invention of field-ion microscopes by Müller and Bahadur in 1955 [42].
About the same time, Alder and Wainwright [43] invented the technique of molecular
dynamics where atomic trajectories could be followed in detail by solving Newton’s
laws in a digital computer; initially for just 100 hard spheres. Since then, of course,
molecular dynamics simulations have been used to obtain microscopically detailed data
for up to a trillion (1012) atoms [44]. While access to microscopic time resolved data for
atomic displacements in real atomic solids is still elusive, experimental systems namely,
“colloidal crystals” offer a way to access this information [8, 9, 45–47]. We now discuss
briefly how information from fluctuations can be used to obtain macroscopic elastic
properties from simulations and experimental data on colloidal solids.

1.2.1 Computer simulations

Computer simulations of atomic systems [48] fall into two broad categories. In the first
category one lists methods where equations of motion are solved. When dissipation-
less Newton’s laws are numerically solved using discrete time steps, this is a molecular
dynamics (MD) simulation. Alternately, depending on the experimental situation of
interest, one may also solve the Langevin equation that involves viscous forces. In
the second category comes simulation methods where one is interested only in the
equilibrium ensemble and dynamical information is not needed. In such cases, one
uses Monte Carlo (MC) methods where a Markov chain of configurations are generated
using a suitable scheme such as the Metropolis algorithm. Besides, certain class of
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relaxation phenomena can be studied using Monte Carlo methods as well. There are
many excellent textbooks which explain these methods in detail [48, 49]. In this thesis
we report results obtained from MD simulations, performed using the open source
LAMMPS code [50, 51], as well as Langevin dynamics and MC simulations performed
with codes developed in-house.

All computer simulation methods require that the nature of the interactions between
the particles constituting the solid be known. Details of the interaction potentials used
are described at appropriate places in the thesis.

1.2.2 Experiments with colloidal solids

Colloidal crystals are composed of particles of silica, latex, microgels etc. with sizes
ranging from 100 nm to a few microns and suspended in a fluid due to mutually re-
pulsive forces of steric or electrostatic origin [8–11, 45–47, 52]. Under suitable con-
ditions, these particles can arrange themselves into periodic lattices, vibrating around
their ideal positions due to Brownian motion. There are now many different kinds
of colloidal crystals possible. One may obtain extremely pure defect free crystals us-
ing super-paramagnetic colloidal particles trapped at a liquid solid interface [53, 54].
These particles interact with long-ranged dipolar interactions whose strength may be
manipulated using an external magnetic field. Using a magnetic field which has a small
amplitude oscillating component, one can anneal out defects and obtain large defect-
free crystalline arrangements of these colloids. Charge stabilized colloids [8, 52, 55]
on the other hand are stabilized by electrostatic repulsion between charges of the same
(usually positive) sign on the colloidal particles, which are screened by counter-ions in
the aqueous medium within which these particles are suspended. The interactions in
this case may be controlled by introducing salt, which changes the screening length.
Crystalline states of charge stabilized colloids occur when salt concentration is low and
screening length large. Sterically stabilized colloids [48] have silica particles that have
their surfaces covered by a layer of polymenrs. Entropic forces prevent two such col-
loidal particles from coming close to each other and thereby prevent aggregation. The
density of these particles as well as the size of the surface polymers decide whether
the colloid remains in the fluid state or crystallizes. In ionic microgel colloidal parti-
cles [56] the interaction potential can be manipulated by temperature as well as electric
field. The size of these particles depends on the amount of cross-linking present in the
polymers within each particle that determines the quantity of water retained and hence
the size. These particles shrink as temperature is increased and the system can undergo
a re-entrant liquid to crystal transition.
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Colloidal particles can also be manipulated using light. Since these particles are
dielectric, they tend to accumulate towards regions where the intensity of light is high.
There has been a lot of work related to studying the effects of external, standing wave
laser patterns on colloids [57–59]. Colloidal solids may also be manipulated using laser
tweezers creating defects such as dislocations and grain boundaries [1, 59, 60]. The
main advantage for studying colloids is that these particles may be readily observed
using optical microscopic techniques and thus information at the microscopic, “atomic”
level may be obtained with nothing much more than a camera and particle tracking
software [47, 61]. Since time scales of motion of these particles are large, even non-
equilibrium processes, such as phase transformation kinetics, may be studied [32].

1.3 Elastic constants from atomic fluctuations

Once instantaneous atomic positions {ri} are available either from computer simula-
tions or from experiments on colloidal particles, a host of mechanical and other infor-
mation may be obtained by analysing this data. The advantage of this procedure is that
when {ri} are obtained, the subsequent analysis may be carried out without knowing
the nature of the system or inter-particle interactions - the analysis is agnostic to all
these details. We now describe past work [61–63] where this information has been
used to obtain elastic moduli of crystalline solids.

Atomic fluctuations need to be analysed with respect to a reference configuration.
This is either the ideal lattice positions at a particular density and temperature or sim-
ply the position of the tagged particles averaged over the entire data set. In what
follows, and in all the work presented in this thesis, the existence of a tagged refer-
ence is essential. There are several advantages and at least one disadvantage of this
approach, namely, the analysis becomes untenable if defects are produced or existing
defects annihilate each other. Therefore, we first review the calculations where defect-
free crystals are analysed and mention other approaches where this restriction is, at
least partially, relaxed.

1.3.1 The defect free case

The elastic moduli of crystals are related to the equal time equilibrium spatial cor-
relation functions of the local strains. The local strains may be obtained by either
computing spatial derivatives of the atomic displacements away from the tagged ref-
erence lattice [62] or by fitting an average deformation matrix which best describes
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the instantaneous positions when operated on the reference coordinates [47, 61]. The
latter procedure is identical to the one used in this thesis and will be described in de-
tail in Chapter 2. Elastic strains are then the symmetric part of the fitted deformation
matrix.

The local strains around each particle are used to obtain the equilibrium strain-
strain correlation functions. Integrating the strain-strain correlation function over sub-
systems, one obtains a length scale dependent estimate of the elastic compliance. Fi-
nally, a finite size scaling procedure may be used to obtain the compliance matrix or
it’s inverse, viz, the elastic moduli in the thermodynamic limit. These estimates have
been shown to be in excellent agreement with elastic moduli obtained in simulations
and experiments by other means [47, 61, 63].

1.3.2 The crystal with defects

In this thesis, as mentioned already, we use a tagged reference configuration in order to
obtain the atomic displacements and strains. A tagged reference configuration consists
of the set of positions of tagged or numbered lattice sites. This means that it is nec-
essary to maintain a one to one correspondence between each point in the reference
configuration and an atom. Atomic exchanges are not allowed. Similarly, creating and
annihilation of point and topological defects also cannot be considered. While, this is
indeed a restriction, for ideal crystals far away from melting or under small deformation
loads this restriction does not prevent us from obtaining useful results. Nevertheless,
there has been some attempts at relaxing this restriction, which we describe briefly
below.

One way to remove dependence on a tagged reference configuration is to focus on the
local density ρ(r) = ∑

i δ(r − ri) which may be computed from the the atomic positions
{ri}. In a crystal, this quantity is a periodic function, peaked at every lattice point at
the centre of every unit cell. Mutual exchanges of particles across unit cells does not
change ρ(r). While in an ideal crystal where every lattice site is occupied, the integral
∫

cell ρ(r)dr = 1. Presence of point defects such as vacancies and interstitial change this
value away from unity. Hydrodynamic equations for variations of the local density of
atoms and vacancies in the crystal may be written down formally [22, 64, 65].

Theoretical approaches, such as the density wave theory of Ramakrishnan and Yus-
souf [66, 67] connect the shape of ρ(r) to the elastic constants. This connection involves
the second functional derivative of the Helmholtz free energy of the crystal with respect
to variations of ρ(r), known as the direct correlation function c(r, r′). This function is
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not known for the crystalline solid. Note that while this is related to its structure factor
measured in X-ray or neutron diffraction experiments [1], obtaining c(r, r′) for a solid
from experiments (unlike a liquid) is non-trivial. In order to use this theory therefore,
further, often uncontrolled, approximations are required, showing that discarding the
tagged reference configuration comes at a price. Nevertheless, there has been some
progress in using a density functional and hydrodynamic framework for obtaining elas-
tic constants of colloidal crystals containing point defects [68, 69].

1.4 Non-affine displacements: a summary of the
thesis

In this thesis, we present a systematic study of atomic fluctuations using the decom-
position of displacements into affine and non-affine components. We shall see that
this decomposition leads to a deeper understanding in several disparate contexts apart
from merely providing a way to compute elastic constants. We shall see the connection
between stability of a global pattern and local connectivity as encoded in the tagged
reference. This will give us insights into the kinds of fluctuations that are benign, i.e.
do not destroy order in any substantial way and those which do. This insights is then
put to practical use for stabilising colloidal crystals and swarm of self propelled robotic
agents such as swarm of drones [34–36].

After a detailed presentation of the projection formalism in Chapter 2, we begin with
a study of small amplitude non-affine displacements in periodic crystals in order to
discover features that are common to all crystalline solids and differentiate them from
those that depend on details of the crystal structure, dimensionality and interaction
parameters. This work is presented in Chapter 3 [34]. The eigenvalue spectrum of the
Hessian of the coarse-grained Hamiltonian taken with respect to local atomic displace-
ments and projected onto the non-affine subspace [6], always shows a prominent gap
between the largest eigenvalues and the others, for all Bravais lattices with a mono-
atomic basis that we have investigated (cubic family in 3d; hexagonal and tetragonal
family in 2d). The gap increases with the size of the coarse graining volume. For open
lattices featuring a multi atom basis, the gap is much less prominent, although large
eigenvalue floppy modes continue to resemble precursors for known defects [34]. The
relative prominence of modes in the non-affine eigenvalue spectrum for open lattices
is more sensitive to the nature of the interactions compared to those in close packed
crystals. Spatial correlation functions of the affine and non-affine modes are similar in
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nature among the various crystal structures studied. Affine and non-affine modes cou-
ple at higher order in displacements [5]. This coupling measures the susceptibility of
the crystal to producing non-affine displacements in response to small external stress.
We find that open crystals (lattice with a multi-atom basis and have lower packing frac-
tion than the close packed structure such as triangular lattice) are more susceptible
than close packed ones by almost an order of magnitude.

In Chapter 4 we study in detail the relation between lattice defects and the promi-
nent non-affine modes [34]. The dominant non-affine eigenmode corresponding to
the largest eigenvalue features displacements that may be identified with defect pre-
cursors [6, 7]. We show that in the 2d triangular lattice, this dominant non-affine
displacement mode generates slip along a close packed plane while in the 3d FCC lat-
tice the dominant non-affine displacements produce local deviations in crystallographic
planes generating slips and stacking faults. [1, 3].

In Chapter 5 we show how atomic displacements in colloids may be manipulated and
colloidal crystals with any given interaction may be arranged in any structure whatso-
ever if it is only possible to suppress non-affine displacements away from this reference
configuration. Special, dynamic, feedback controlled laser traps have been proposed,
though not yet experimentally realized, which may be able to perform this feat. Unlike
static traps, the structures stabilized by such a process are translationally invariant and
possess all allowed zero modes [35].

Finally, in Chapter 6 we go beyond atomic and colloidal solids and show that the ideas
discussed in this work may also be used to stabilize swarms of autonomous robotic
agents [16, 17, 20, 36, 70, 71] which are able to communicate with each other and
modify their motion depending on their local configuration. Suppressing non-affine
displacements in these swarms leads to stabilisation of any desired pattern.

We finally conclude the thesis in Chapter 7 with a brief review of the work presented
and potential future directions along with other important and active work on non-
afffine displacements.
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The projection formalism for
non-affine displacements

2

In this chapter, we present the method we use to project out local atomic displace-
ments into affine and non-affine components. In the most general setting, non-affine
displacements are those atomic displacements that cannot be captured by a homoge-
neous deformation. For example, imagine an ideal (defect free) crystal at zero temper-
ature consisting of atoms placed at their reference position. The Cauchy-Born rule [72]
(CBR) states that any external deformation caused by changing the shape of the bound-
ary of the solid is distributed homogeneously among the atoms of the crystal, which are
shifted appropriately from their reference position. This, of course, amounts to stating
that for an ideal crystal there are no non-affine deformations at zero temperature. At
finite temperature, one expects this rule to hold on the average, with the (finite size
scaled) elastic moduli [47, 61] setting the scale for the displacement fluctuations aver-
aged within some local coarse graining volume Ω.

While this is more or less true, there is a subtle point here that needs attention. In-
deed, atomic displacement fluctuations within Ω decompose naturally into two mutu-
ally orthogonal subspaces. One, designated as affine, consists of fluctuations for which
the CBR holds locally and instantaneously, while the other is the set of non-affine dis-
placement modes for which the CBR is violated. While the former may be directly
connected to the elastic moduli, the latter represents fluctuations that act as precursors
for defects.

We elaborate this decomposition principle in this and the next chapter and show
explicitly the connection to lattice defects in chapter 4.

2.1 The Falk-Langer least square fit formalism

Solids are characterised by their structural rigidity and resistance to small applied
strain [2]. However, for large strains, solids (crystalline or amorphous) may deform
plastically [73]. For crystalline solids, this is often understood in terms of the dynamics
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of lattice defects, such as dislocation dipoles(2d) or loops(3d) [3]. On the other hand,
identification of such defects in amorphous solids is challenging due to the lack of long-
range structural order. However, particle rearrangement responsible for the plastic flow
of an amorphous solid is localised [41, 74]. Such localised regions, otherwise known
as “Shear Transformation Zones(STZ)”, flow faster than the rest of the material and
have led to several phenomenological theories of plastic deformation [25]. The idea
of non-affine displacements originated first, as a way to identify STZs from configura-
tions obtained from simulations of amorphous solids. We use a modified version of this
original formulation as described below.

Under an applied stress, particles undergo displacements {ui} relative to a chosen ref-
erence configuration {Ri}. In this microscopic picture, Falk and Langer [41] identified
STZ as the regions where the particle displacements deviate substantially from those
generated by a local homogeneous strain field. Therefore, the least square residual (χ)
associated with site i, is defined to identify STZ,

χi = min
D

∑

j∈Ω
[(uj − ui) − D (Rj − Ri)]2 , (2.1)

where D is a homogeneous strain field which closely approximates the actual particle
displacements. The sum over j extends over the set Ω consisting all the neighbours in
the interaction range of particle i. The component of particle displacements which can
be represented by the best fit strain field, i.e. D (Rj − Ri) is termed as affine and the
component which cannot is called non-affine. This decomposition of particle displace-
ments into affine and non-affine parts is more profound and not limited to the defor-
mation of amorphous solids due to external loads. In principle, any system micro- or
macroscopic, regardless the underlying source of deformation, particle displacements
away from specified reference configuration can always be decomposed into affine and
non-affine parts.

In their original formulation, the positions {Ri} were chosen as the instantaneous
positions of the atoms at some earlier time step. This is necessary for amorphous con-
figurations where a natural choice for ideal atomic positions does not exist. In a crystal,
on the other hand, the zero temperature (T = 0) ideal lattice positions provides a nat-
ural choice for the reference {Ri}. This choice of the reference is used in next section
and the rest of the thesis.
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2.2 The projection method for lattices with
mono-atomic basis

In the view of section 2.1, particle displacements in a disordered solid under external
load carries a non-affine component. Presence of this non-affine part, even at zero
temperature, is primarily due to inhomogeneities where the space dependent elastic
constants change the local environment in a solid. For a homogeneous crystalline solid,
displacements due to external stress Σ are affine and can be expressed as a linear trans-
formation of the reference configuration, ui = DRi. Here, D is the local deformation
tensor and obeys the constitutive relation D = K−1Σ, where K being the matrix of elas-
tic constants. At finite temperature, non-affine displacements in homogeneous solids
may also arise purely due to thermal fluctuations.

A previous study [5] on a crystalline network of harmonically bonded particles re-
vealed that any thermal distortion of coarse-graining region Ω can be decomposed into
affine and non-affine parts using a well defined projection formalism. Furthermore, the
statistics of non-affine fluctuations and the affine distortion D was obtained by inte-
grating out phonons with wavelength comparable or smaller than the coarse-graining
volume. Below, we briefly outline the projection formalism which was utilised to study
mono-atomic lattices and state significant outcomes of the earlier studies [5–7, 30–
33].

Fig. 2.1. Schematic showing coarse-graining volume Ω around set of particles arranged in tri-
angular lattice. Dotted circle represents zero temperature reference position and col-
ored circles are the instantaneous positions.

Consider a d-dimensional lattice with N lattice sites in thermal equilibrium. For par-
ticles in our system, we denote {u} be the set of displacement vectors away from the

2.2 The projection method for lattices with mono-atomic basis 11



zero temperature reference configuration {R}. Next, around any particular particle 0,
a coarse-graining volume Ω consisting all the nearest neighbours of particle 0 is con-
structed (See Fig. 2.1). For any distortion of Ω consisting NΩ particles, displacements
consists both affine and non-affine part. In such cases (discussed in Sec. 2.1), a local
affine deformation tensor is defined which minimises Eq.(2.1)

χ0 = min
D

∑

i∈Ω
[(ui − u0) − D (Ri − R0)]2 .

Here, χ measures the non-affinity in coarse-grained region Ω around particle 0. Since
all lattice sites are equivalent, therefore the subscript can be dropped from χ0.

To simplify the notation, relative displacements (ui − u0) for all i were arranged into
a NΩd dimensional block column vector ∆ such that element ∆iα represents αth spatial
component of relative displacement of particle i. In the similar fashion, elements of
D are arranged in a d2 dimensional vector e = (D11, D12...D1d, D21...DNΩd). With this
notation, the above equation can now be expressed as,

χ = mine [∆ − Re]2 , (2.2)

where R is a NΩd×d dimensional block matrix with elements Riα,γγ′ = δαγ

(
Riγ′ − R0γ′

)
.

The minimisation of Eq.(2.2) yields

e = Q∆, (2.3)

χ = ∆TP∆. (2.4)

Considering I as the identity matrix, one has,

P = I − RQ (2.5)

Q = (RTR)−1RT. (2.6)

Note that the local homogeneous strain field e minimises Eq.(2.2) and provides the
affine part of the deformed Ω. Evidently, matrix P and Q depends only on the zero
temperature reference configuration and satisfies the following properties,
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• P is a NΩd dimensional symmetric matrix, i.e., PT = P

• P is idempotent, i.e., P2 = P

P2 =
[
I − R(RTR)−1RT

]2

= I2 − 2R(RTR)−1RT

+ R(RTR)−1
[
(RTR)(RTR)−1

]
RT

= P. (2.7)

• Since, P is idempotent, its eigenvalues are either 0 or 1. More precisely, the pro-
jection matrix P has d2 zero eigenvalues and NΩd − d2 number of one eigenvalues
correspond to affine and non-affine modes respectively.

• In a similar fashion, it is easy to show that RQ = I − P is also idempotent and has
similar properties to P

• Note that PQT = 0.

Therefore, P being the projection matrix project out the non-affine component of ∆
with χ being the measure of non-affinity. Similarly I − P projects onto the complemen-
tary space of affine deformations.

The statistics of χ and e is then obtained by considering the canonical distribution
of the displacements {ui} and momenta {pi} at inverse temperature β. For harmonic
interactions among particles with spring constant k and mass m, the Hamiltonian

H =
∑

i

p2
i

2m
+ k

2
∑

〈ij〉
((ui − uj) · R̂ij)2, (2.8)

produces the displacements vector ∆ with a Gaussian distribution of mean zero and
variance proportional to the temperature(1/β). Non affinity χ, as defined, is quadratic
in ∆, hence average thermal contribution to non-affinity can be measured.

〈χ〉 = Tr
(〈

P∆∆TP
〉)

= Tr
(
P
〈
∆∆T

〉
P
)

= Tr (PCP) ,

(2.9)
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that is the sum of the eigenvalues of PCP. In Eq.(2.9), we have used the properties of
the projection matrix (P2 = P) and that the scalar variable χ can be written as a trace
of ∆TP∆. Here we have defined,

C ≡ 〈∆∆T〉. (2.10)

The covariance matrix C is a NΩ ×NΩ block matrix with each block of size d×d. Due to
the lattice symmetries, not all the components of C are independent and overall one has
real symmetric C matrix. The components of C are then obtained by assuming plane
wave solution for the displacements,

∆i =
∫ dq

VBZ
uq
(
eq·Ri − eq·R0

)
.

and integrating over all the wave-vectors q correspond to the first Brillouin zone with
volume VBZ = ∑

R
∫

dq exp(iq · R). Thus the components of C are

Ciα,jγ = 〈∆iα∆jγ〉 = 1
β

∫ dq
VBZ

D−1
αγ (q)

(
eiq·Rj − eiqR0

)

×
(
e−iq·Ri − e−iq·R0

)
.

(2.11)

Here, D(q) is the dynamical matrix and can be calculated analytically for any given
harmonic lattice [2]. Likewise, we note that 〈e〉 = 0 due to the Gaussian distribution of
∆, but in the presence of external stress Σ linear response yields,

〈e〉Σ =
〈
eeT

〉

Σ=0
Σ, (2.12)

which is in accordance with the Hooke’s law. The zero stress compliance is obtained in
the same spirit of Eq.(2.9), hence 〈eeT〉 = QCQT. This analysis, therefore, offers a way
to obtain elastic constants from fluctuations of the affine part of the displacements [61–
63]. The stress Σ is the thermodynamic conjugate to e.

The projection matrix P depends on the reference configuration and is therefore
exactly known. For the covariance matrix C, one can calculate numerically using
Eq.(2.11), or through simulation. Once P and C are known matrix PCP can be diago-
nalised. It has NΩd eigenvalues of which d2 are zero. Thermal average of non-affinity
parameter is therefore sum of these non zero eigenvalues (Eq.(2.9)). The eigenvec-
tors correspond to non zero eigenvalues gives the non-affine distortion of Ω and are
shown in Fig. 2.2 for the case of two dimensional triangular lattice [5]. The structure
of the null space of PCP can be understood as being spanned by the eigenvectors cor-
respond to d2 non zero eigenvalues of the complementary space (I − P)C(I − P). The
affine modes for triangular lattice are shown in Fig. 2.3. These independently fluctu-
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Fig. 2.2. From [5]. (a) to (h), eigenvectors correspond to non zero eigenvalues of PCP for
the case of triangular lattice. The NΩ = 6 resulting 12 eigenvalues in two dimensions.
Four eigenvalues out of twelve are zero and correspond to affine modes and are shown
in Fig 2.3.

ating affine and non-affine modes forms a complete basis for the distortion of Ω. Note
that shuffle modes as discussed in Ref [75], is a special case of non-affine displacements
discussed here.

Fig. 2.3. From [5]. (a) to (d), eigenvectors correspond to non zero eigenvalues of
(I − P)C(I − P). The eigenvectors correspond to four non zero eigenvalues represents
the affine transformation of the reference lattice, volume change, uni-axial strain,
shear, and rotation.

For any observable A(∆), thermal average over the coarse-graining can be obtained
by microscopic Hamiltonian, thus,

〈A〉 = 1
ZΩ

∫ ∏

iα

d∆iαA(∆) exp
(

−1
2∆TC−1∆

)
(2.13)
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with ZΩ as a normalization constant. Taking A = eikχ+iκκκTe in the above equation gives
characteristic function Φ(k,κκκ) for the joint probability distribution of χ and e.

Φ(k,κκκ) =
〈
eikχ+iκκκTe

〉

= 1
ZΩ

∫ ∏

iα

d∆iα × exp
[
−1

2∆TC−1∆ + ik∆tP∆ + iκκκTQ∆
]

,
(2.14)

where, in above, we have used Eq.(2.3, 2.4). Completing the square followed by Gaus-
sian Integral, above equation yields

Φ(k,κκκ) = 1
[|(I − 2ikPCP)|]1/2 exp

(
−1

2κκκTQCQTκκκ
)

× exp
[
−ikκκκTQC(I − 2ikPC)−1PCQTκκκ

]
.

(2.15)

Marginal distributions now can be obtained by numerically inverting the characteristic
function and appropriately setting k or κκκ equal to zero. Similarly, average of other
higher moments can be obtained by taking appropriate derivatives of Eq.( 2.15). Note
that non-affinity χ and strain e couples at higher order. A straightforward implication
of this coupling is seen in the presence of external stress. Upon substituting κκκ → κκκ − iΣ
in Eq.(2.15), one finds,

〈χ〉Σ = 〈χ〉Σ=0 + ΣTQC[P, C]QTΣ. (2.16)

Here, the components of matrix Σ have been arranged in a column vector accordingly.
Interestingly, the contribution due to the external stress Σ depends on the commutator
[P, C] that vanishes only in one-dimensional systems. Further, the first non-zero cross
correlations of order O(kκκκ2),

〈χeeT〉 − 〈χ〉〈eeT〉 = 2QC[P, C]QT, (2.17)

has a linear dependence on [P, C]. For the triangular lattice, the above outlined correla-
tion is zero only for the strains associated with rotation and isotropic volume change [5].
This is understood, as large stresses (mainly uni-axial and shear) change the local
neighbourhood of particle significantly and thus contributes to non-affinity. To express
cross correlations between higher moments of χ and e, higher order commutators of P
and C are required, making [P, C] an important quantity to computed.
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Fig. 2.4. Schematic showing the two coarse-graining volume for cross correlations.

2.2.1 Spatial direct- and cross- correlations

As discussed above, lattice symmetries ensures that the non-affine parameter calculated
over two distant neighborhoods in a crystal (see Fig. 2.4) have the same thermal aver-
age. Spatial, two point correlations of non-affine parameters (χ ≡ χ(R0), χ̄ ≡ χ(R̄0))
is expressed as

〈χχ̄〉 − 〈χ〉〈χ̄〉 = 2Tr(PC̄P)(PC̄P)T. (2.18)

In order to evaluate the joint covariance matrix C̄ ≡ 〈∆∆T〉, one needs to simultane-
ously consider displacement differences in two coarse-graining region. A expression
similar to Eq.(2.11) can also be obtained for the joint covariance matrix,

C̄iα,jγ = 1
β

∫ dq
VBZ

D−1
αγ (q)

(
eiq·Ri − eiq·R0

) (
e−iq·Rj − e−iq·R0

)
. (2.19)

The spatial correlation for χ decays exponentially for the triangular lattice [5, 6]. Sim-
ilarly, strain-strain correlation are

〈
eēT

〉
=
〈
Q∆∆̄TQT

〉
= QC̄QT.

Provided the dynamical matrix of the lattice D(q), these correlations are easy to evalu-
ate in Fourier space Eq.(2.19). Using the Fourier component of C̄ from Eq.(2.19), strain
correlations takes the following form,

〈eēT〉(q) = QC̄(q)QT.

In the case of a triangular lattice with the harmonic Hamiltonian in Eq. 2.8, explicit
expressions of strain correlations for volume change (ev = e1 + e4), uni-axial (eu =

2.2 The projection method for lattices with mono-atomic basis 17



e1−e4), shear (es = e2+e3), and local rotation (ω = e2−e3) obtained at long wavelength
limit are

(βa2k)
〈
e2

v

〉
(q) ≈ 8

9 ,

(βa2k)
〈
e2

u

〉
(q) ≈ 8

9 + 64
9

q2
xq2

y(
q2

x + q2
y

)2 ,

(βa2k)
〈
e2

s

〉
(q) ≈ 8

3 − 64
9

q2
xq2

y(
q2

x + q2
y

)2 ,

(βa2k)
〈
ω2
〉

(q) ≈ 8
3 .

(2.20)

Note that the combination of spring constant k, temperature 1/β and the lattice con-
stant a is dimensionless. Therefore, the elastic constants of the triangular lattice may
be obtained from the q → 0 limit of the correlations functions.

This completes the description of projection formalism used for mono-atomic lattices.
In the next section, we first generalise the formalism to multi-atom basis and in d-
dimensions and then use it to study various lattices in two and three dimensions. In
subsequent chapters of the thesis, we use this formalism to study non-affine fluctuations
in crystals and swarms.

2.3 Generalisation to lattices with multi-atom
basis

Fig. 2.5. Schematic showing coarse-graining volume Ω for lattice with basis. Different color
represents two different basis atoms and dotted circles are zero temperature position
of the particles. Each cell (dotted ellipse) denotes the lattice sites, here arranged in a
triangular lattice. The particular schematic here has two basis atom, however, more
basis atoms can be added.
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We show below how this decomposition may be carried out for a generic crystalline
solid. We consider a d dimensional lattice with N lattice sites and Nb basis particles per
site. The total number of particles in the system is N × Nb. We take {Riα} as the equi-
librium position vector for any site i ∈ {0, 1, 2 . . . N − 1}, where α ∈ {0, 1, 2 . . . Nb − 1}
represents the index of a basis particle. To distinguish affine and non-affine displace-
ments we consider relative displacements of pairs of atoms whose reference positions
are within some fixed coarse-graining distance r of each other (see Fig. 2.5). Specifi-
cally, the coarse-graining region around the basis on lattice site i is defined as

Ω(i) = {(jγ, iα)|0 < |Rjγ − Riα| ≤ r ∧ (j ,= i ∨ γ > α)}. (2.21)

In words, Ω(i) contains all pairs of indices (jγ, iα) of particles within the specified
distance r; at least one of these particles has to belong to the basis around lattice site
i. The last constraint in Eq.(2.21) merely avoids double-counting of pairs within the
basis, by insisting that index pairs of the form (iγ, iα) have got ordered basis indices,
γ < α. We denote the number of particle pairs in Ω(i) by NΩ and number the elements
of Ω(i) in some arbitrary fashion as

Ω(i) = {(jnγn, iαn), n = 1 . . . NΩ}

We note that the lattice symmetries mean that all neighborhoods Ω(i) for different i are
just translated copies of each other.

When the lattice is deformed particles undergo displacements and take new positions
{riα}; we write the displacement from their equilibrium positions as uiα = riα − Riα.
It has been shown [5–7] that the displacements in a given deformed coarse-graining
volume can be expressed as a linear combination of independent affine and non-affine
deformations. For a fully affine deformation of the coarse-graining volume around
lattice site i there is by definition a local d × d dimensional deformation matrix D such
that

ujnγn,iαn = DRjnγn,iαn , n = 1 . . . NΩ (2.22)

using the abbreviations ujnγn,iαn = ujnγn −uiαn and Rjnγn,iαn = Rjnγn −Riαn. In general,
{uiα} will have contributions from non-affine transformations as well. In such cases D
is defined as the matrix that minimizes

χi = min
D




NΩ∑

n=1
(ujnγn,iαn − DRjnγn,iαn)2



 (2.23)

Therefore χi is a measure of the non-affinity at the given lattice site i.
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We now introduce some simplified notation by rearranging components of ujnγn −uiαn

for all n into a column vector ∆ of length NΩd with elements

∆nµ = uµ
jnγn,iαn

where µ = 1 . . . d denotes the spatial components of the displacement vectors. Sim-
ilarly a column vector e of length d2 is obtained by arranging the elements of D in
order (D11, D12...D1d...Dd1, Dd2...Ddd). With these definitions, Eq. (2.23) may be written
concisely as

χi = mine

(
[∆ − Re]2

)
(2.24)

Here we have introduced a block matrix R whose elements are given by

Rnµ,νν′ = δµνRν′

jnγn,iαn

and the entries of the vector Re are given by
∑

νν′ Rnµ,νν′eνν′ in the obvious way. Once
Eq. (2.24) is minimized, we obtain the residual contribution from non-affine deforma-
tion and the “best-fit” affine strain. These can be expressed as

χi = ∆TP∆ (2.25)

e = Q∆. (2.26)

with the matrices P = I − RQ and Q =
(
RTR

)−1 RT. Note that P is a projection matrix
(P2 = P), which, when acting on the space of ∆, extracts only the non-affine compo-
nent of the displacements. It can be seen that P has d2 zero and NΩd − d2 non-zero
eigenvalues corresponding to the affine and non-affine subspaces respectively. As usual
I − P will then project out the affine component of ∆. The elements of the best-fit affine
transformation matrix D from Eq. (2.26) can be written explicitly as

Dµν =
∑

ν′
(M−1)νν′

∑

n

Rν′

jnγn,iαn
∆nµ (2.27)

in terms of the matrix M with elements

Mνν′ =
∑

n

Rν
jnγn,iαn

Rν′

jnγn,iαn
.
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For the lattices considered in this paper, M is diagonal due to lattice symmetries (see
also the discussion in Ref. [5]) so that Eq.(2.27) simplifies to

Dµν = 1
∑

n(Rν
jnγn,iαn

)2
∑

n

Rν
jnγn,iαn

∆nµ (2.28)

Due to translational invariance, the properties of χi are the same for all lattice sites i, for
any lattice and dimension. We therefore abbreviate χi simply as χ in the following.

We now obtain the statistics of (χ, e) in the classical canonical ensemble for any lattice
and dimension. For any given Hamiltonian H the canonical probability distribution is

P(p, u) = 1
Z

e−βH(p,u) (2.29)

Here we restrict the Hamiltonian to the harmonic approximation,

H =
∑

iα

p2
iα

2miα
+ 1

2
∑

iα,jγ

∑

µν

uµ
iαφµν

iα,jγuν
jγ (2.30)

where piα are the momenta, miα the masses and φµν
iα,jγ are the elements of the Hessian.

The Hamiltonian can be easily diagonalized if one takes a plane wave ansatz for the
displacements. We therefore write

uiα =
∫ dq

VBZ
uα(q)eiq·Riα

and similarly

uiα,jγ =
∫ dq

VBZ
uα(q)

(
eiq·Riα − eiq·Rjγ

)

where the integration runs over the first Brillouin zone with volume given by VBZ =
∑

Ri0

∫
dq exp(iq ·Ri0) and q is the wave vector. The Lattice Green’s Function (LGF) may

be obtained as the inverse G(q) = D−1(q) of the dynamical matrix D(q) with elements

Dµν
αγ(q) =

∑

i

φµν
iα,0γeiq·(Riα−R0γ) (2.31)

With the knowledge of the LGF, thermal averages of different quantities are easy to
calculate. For example the displacement correlator reads in Fourier space

〈
uµ

α(q)uν
γ(q′)

〉
= Gµν

αγ(q)δ(q + q′)VBZ ,

and in real space

〈
uµ

iαuν
jγ

〉
= 1

β

∫ dq
VBZ

Gµν
αγ(q)eiq·(Riα−Rjγ). (2.32)
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Along similar lines, for our coarse-graining volume one can obtain the thermal average
of any observable A(∆) as

〈A(∆)〉 = 1
Z

∫
d∆ A(∆)e− 1

2 ∆TC−1∆ (2.33)

with the normalisation constant Z = (2π)NΩd/2
√

| C |. The covariance matrix C in the
above equation can be obtained from the LGF via

Cnµ,mν = 〈∆nµ∆mν〉

=
∫ dq

βVBZ

[

Gµν
γnγm

(q)eiq·Rjnγn,jmγm (2.34)

− Gµν
αnγm

(q)eiq·Riαn,jmγm

− Gµν
γnαm

(q)eiq·Rjnγn,iαm

+ Gµν
αnαm

(q)eiq·Riαn,iαm

]

To obtain the statistics of (χ, e) we make use of Eq. (2.33) and obtain the characteristic
function Φ (k,κκκ) for the joint probability distribution P(χ, e).

Φ (k,κκκ) = exp
(

−1
2κκκTQC (I − 2ikPC)−1 QTκκκ

)
(2.35)

× 1
√

| I − 2ikPCP |
.

Using the identity
(I − 2ikPC)−1 = I + (I − 2ikPC)−1 (2ikPC)

the last result can be written in terms of the characteristic function for the marginals as
follows:

Φ (k,κκκ) = Φχ(k)Φe(κκκ)e−ikκκκTQC(I−2ikPC)−1PCQTκκκ (2.36)

where

Φχ(k) = 1
∏

l

√
1 − 2ikσl

(2.37)

Φe(κκκ) = e− 1
2κκκTQCQTκκκ (2.38)

and the σl are the eigenvalues of PCP. For κκκ = 0 and k = 0, Φ (k,κκκ) reduces to Φχ(k)
and Φe(κκκ) respectively. The term in the exponential governs the (non-linear) coupling

22 Chapter 2 The projection formalism for non-affine displacements



between the non-affine and affine components of the displacements. Previous work has
shown that this coupling is significant only for large uniaxial and shear strains [5]. For
smaller strains, it can largely be ignored.

With the knowledge of the characteristic function, thermal averages and other higher
order moments may be computed such as

〈χ〉 = Tr (PCP) (2.39)

〈
eeT

〉
= QCQT (2.40)

From Eq. (2.39) it is clear that 〈χ〉 is a sum over the eigenvalues of (PCP). Each
eigenvalue represents the contribution of a specific non-affine mode to χ. It has been
shown [6] that these eigenvalues are elements of the inverse Hessian of the free energy
in the direction of the non-affine mode in configuration space. A large eigenvalue
implies a small value of the local curvature of the free energy minimum. We shall
see later in this paper that the corresponding eigenvectors are precisely those atomic
displacement fluctuations that lead to lattice defects or other imperfections tending to
destroy crystalline order. The non-affine mode corresponding to the largest eigenvalue
therefore has the highest contribution to this process.

The non-affine parameter χ depends linearly on temperature T (at low T , where a
harmonic theory applies) and is inversely proportional to the strength of the interaction.
Due to the fact that the underlying distribution of ∆ is Gaussian, 〈e〉 vanishes unless
an external stress is present. Finally, the leading order non-linear coupling between
non-affine and affine modes is given by

〈
χeeT

〉
− 〈χ〉

〈
eeT

〉
= 2QC[P, C]QT. (2.41)

Two-point distributions and spatial correlation functions for χ and e may also be
calculated following the procedure explained in Refs. [5–7]. Below we include a brief
description for completeness.

2.3.1 Spatial direct- and cross- correlations

The spatial correlations of the non-affine parameter at two lattice sites i and k are given
by (χ ≡ χi, χ̄ ≡ χk)

〈χχ̄〉 − 〈χ〉〈χ̄〉 = 2Tr(PC̄P)(PC̄P)T (2.42)
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Fig. 2.6. Schematic showing two coarse-graining volume for cross correlations. Two distant
neighborhoods Ω and Ω̄ are situated around lattice sites i and k respectively.

The two point covariance C̄ between relative displacements within two coarse-graining
neighborhoods Ω ≡ Ω(i) and Ω̄ ≡ Ω(k) around lattice positions Ri0 and Rk0, respec-
tively, is defined as

C̄nµ,mν = 〈∆nµ∆̄mν〉 (2.43)

It is obtained from an expression similar to Eq. (2.34) (see Ref. [5] for details):

C̄nµ,mν =
∫ dq

βVBZ

[

Gµν
γnγm

(q)eiq·Rjnγn,lmγm (2.44)

− Gµν
αnγm

(q)eiq·Riαn,lmγm

− Gµν
γnαm

(q)eiq·Rjnγn,kαm

+ Gµν
αnαm

(q)eiq·Riαn,kαm

]

where we have assumed that the elements of Ω(k) are numbered (lmγm, kαm). For all
simple lattices in 2d and 3d with one particle basis, the correlations 〈χχ̄〉 − 〈χ〉〈χ̄〉 are
short ranged.

Strain-strain correlation may be obtained from

〈
eēT

〉
=
〈
Q∆∆̄TQT

〉
= QC̄QT. (2.45)

It is often useful to consider these correlations in Fourier space, where they can be
expressed as [5] 〈

eēT
〉

(q) = QC̄(q)QT (2.46)
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with the Fourier transform C̄(q) defined via

C̄nµ,mν =
∫ dq

VBZ
C̄nµ,mν(q)eiq·Ri0,k0 .

Comparison with Eq.(2.44) then shows that βC̄nµ,mν(q) is given directly by the term in
square brackets in Eq.(2.34). This follows from the fact that the particle pairs in Ω(k)
are just those in Ω(i) translated by Rk0,i0; e.g. in the first term of Eq.(2.44) one has
after extracting the Fourier factor eiq·Ri0,k0 the phase term

eiq·(Rjnγn,lmγm −Ri0,k0) = eiq·[Rjnγn −(Rlmγm −Rk0,i0)]

= eiq·(Rjnγn −Rjmγm )

= eiq·Rjnγn,jmγm

Correlations of the affine displacements viz. local volume change (ev), uniaxial or devi-
atoric strain (eu), shear strain (es) and rotation (w) respectively, may be obtained using
the component forms as follow,

〈
e2

v

〉
(q) = E1111 + E2222 + 2E1122 (2.47)

〈
e2

u

〉
(q) = E1111 + E2222 − 2E1122

〈
e2

s

〉
(q) = E1212 + E2121 + 2E1221

〈
w2
〉

(q) = E1212 + E2121 − 2E1221,

Here we have used the same notation for the fourth rank tensor, E = QC̄(q)QT as in
Ref. [5], and 〈e2

v〉 (q) etc. are strain correlators in Fourier space. Expressions for 3d can
be obtained in similar fashion, for instance, strain correlation in 3d for volume, uniaxial
and shear in the x − y plane are as follows,

〈
e2

v

〉
(q) = E1111 + E2222 + E3333 + 2 (E1122 + E1133 + E2233) (2.48)

〈
e2

u

〉
(q) = E1111 + E2222 + E3333 − 2 (E1122 + E1133 − E2233)

〈
e2

s

〉
(q) = E1212 + E2121 + 2E1221.

Other components of the shear strain (and rotation) can be written down by analogy.
As before (see Sec. 2.2.1), the q → 0 limit of the correlation function obtains the elastic
compliances or moduli of the lattice.

2.3 Generalisation to lattices with multi-atom basis 25



2.4 Summary and conclusion

In this chapter we have introduced and described the projection formalism for decom-
posing particle displacements from a reference configuration into affine and non-affine
components. While the affine components of the displacements preserve local connec-
tivity, the non-affine component tend to disrupt them. We show later in this thesis how
one can selectively enhance or suppress the non-affine component without affecting the
affine part. Since our formulation is based on the existence of tagged reference, it does
suffer from one fault, namely, exchange of particle tags even in the reference structure
is classified as non-affine “displacement”. Thereby explicitly breaking the permutation
symmetry of particle tags. This issue however does not affect any of the conclusion
of this thesis since particles cannot normally exchange positions without any prior dis-
placements.

In the next chapter, we use this knowledge to analyse displacements in a few chosen
crystal lattices in two and three dimensions.
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Non-affine displacements in
2d and 3d crystals

3

In this chapter, we use the methods of Chapter 2 to obtain statistics of affine and non-
affine displacements for a number of lattices in two (2d) and three (3d) dimensions. In
2d we consider lattices both with a single atom basis such as the triangular and square
lattices as well as those with a multi-atom basis like the planar honeycomb and the
Kagome lattices. In 3d we confine ourselves to a study of cubic systems, namely, the
simple cubic, body centered and face centered cubic lattices. In order to keep the discus-
sion general we model the interactions by harmonic springs. Our results are therefore
valid for any crystalline solid at sufficiently low temperatures where anharmonic effects
may be neglected.

3.1 Model Hamiltonian

A typical Hamiltonian for a set of atoms interacting among themselves by harmonic
springs is given by,

H =
∑

iα

p2
iα

2m
+

∑

〈iα,jγ〉

kiα,jγ

2
(
uiα,jγ · R̂iα,jγ

)2
(3.1)

Here kiα,jγ determines the spring constant acting between particle pairs iα, jγ. The
kiα,jγ are chosen such that the lattice is stable and satisfies Maxwell’s stability crite-
ria [76]. In particular, we take kiα,jγ to be equal to k1 for nearest neighbors and k2 for
next nearest neighbors; interactions beyond the second neighbor shell are neglected.
Additionally, throughout the paper, the nearest neighbor bond strength k1 and the lat-
tice constant a are chosen to be unity without any loss of generality. This sets the scales
for energy and length respectively.

We have also, in some cases, studied the effect of including simple three body bond-
angle dependent potentials in order to introduce an energy cost for bond bending.
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f.

g.

Fig. 3.1. Schematic diagram showing the triangular a., square b., planar honeycomb c.,
kagome d., simple cubic e., body centered cubic f. and face centered cubic g. lat-
tices. The nearest neighbor bonds are shown in bold while the next nearest neighbor
bonds, whenever present, are drawn using dashed lines. The parameter a is the lat-
tice constant, chosen to be unity. The equilibrium bond angle θ0 has also been marked
for the triangular and honeycomb lattices. In the 3d cases shaded color regions have
been added to make the cubic geometry clearer.

These interactions are very well documented in the literature mostly on the system like
graphene [77, 78]. To model bond bending we take the Kirkwood [79] model,

Hbend = kb

2
∑

〈iα,jγ,kδ〉
(∆θiα,jγ,kδ)2 .

which in the small oscillation approximation can be written as

Hbend . kb
2
∑

〈iα,jγ,kδ〉[cot θ0(R̂jγ,kδ · ujγ,kδ

+R̂iα,kδ · uiα,kδ) − 1
sin θ0

(R̂iα,kδ · ujγ,kδ

+R̂jγ,kδ · uiα,kδ)]2 (3.2)

where θ0 is the equilibrium angle and angular brackets denote triples of particles where
iα and jγ are both nearest neighbors of kδ.
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In the following section we discuss our results for specific lattices in 2d and 3d. In
Fig. 3.1 we have shown these lattices schematically and indicated the bonding interac-
tions that we have considered.

We are now in a position to use the methods described in Chapter 2 to obtain the
statistics of coarse grained non-affine and affine displacements of particles interacting
through the Hamiltonians presented in Sec. 3.1 for a collection of 2d and 3d lattices
(see Fig. 3.1). As discussed above, the statistics of χ can be obtained once one has
knowledge of the matrix PCP. The projection matrix P only depends upon the refer-
ence position of particles in the lattice and can be constructed easily. The covariance
matrix C can be calculated using Eq. (2.34) once one knows the dynamical matrix
D(q). For the harmonic interactions with nearest (and next nearest) neighbors we
can compute D(q) in a straightforward manner for all lattices; the results are listed
in Appendix A.1. The probability distribution for χ can then be obtained using the
eigenvalues of PCP. We have also checked our results by directly simulating the model
systems using standard molecular dynamics in the canonical ensemble [48] as imple-
mented in the LAMMPS simulation package [50]. All our results scale linearly with
temperature kBT = β−1, where kB is the Boltzmann constant. We have used different
temperatures for different lattices only for ease of presentation. Our results for P (χ)

Fig. 3.2. Scaled distribution P (χ!) for all 2d lattices where χ! = χ/〈χ〉. The solid colored
lines are from our analytic calculations and the points are simulation results (using
N = 1024 except for Honeycomb, where N = 512 and Kagome, where N = 300).
Triangular: light pink with kb = 0; Square: sky blue, k2 = 0.5; Honeycomb: brown,
k2 = 0.5 and Kagome: purple, k2 = 0.5. The distribution for square and triangle
plotted here is for the smallest coarse-graining volume used in Sections 3.1.1 and
3.1.2. Whereas, for other lattices coarse-graining volume is same as shown in Fig 3.6
and 3.8.
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Fig. 3.3. Scaled distribution P (χ!) for all 3d lattices, where χ! = χ/〈χ〉. The meaning of
the symbols is the same as in Fig. 3.2. The distribution is plotted for SC: sky blue,
k2 = 0.5, N = 1000. BCC : brown, k2 = 0.5, N = 2000. FCC: purple, k2 = 0.75,
N = 4000. The coarse-graining volume is described in the text.

obtained by numerically inverting Φχ(k) are shown in Fig. 3.2 and Fig. 3.3 together
with the results from direct simulations. All the averaging is done over at least 1000
well equilibrated and uncorrelated configurations. Needless to say, the agreement is
perfect as expected.

Once our formalism is thus established for all the systems considered in 2d and 3d,
we turn to each lattice in detail below. We show that using our method one can find the
most prominent non-affine displacement modes (eigenvectors of PCP) for any lattice.
Often these modes turn out to be precursors for the most commonly observed defect
structures for a given lattice system. We note that the relative probabilities of different
non-affine modes also depend on the lattice and the interactions and can be easily
captured using our approach.

3.1.1 The triangular lattice in 2d

The triangular lattice is the only close packed structure observed in 2d [1]. It has just
one basis particle per site. We have previously established that the most prominent
non-affine mode, i.e. the eigenvector corresponding to the largest eigenvalue of PCP,
corresponds to the incipient dissociation of a tightly packed dislocation-anti-dislocation
pair [6]. To reach this conclusion we used a coarse-graining volume that included
only six nearest neighbor particles (see Fig. 3.4). This makes PCP a 12 × 12 matrix
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Fig. 3.4. Non-affine modes for triangular lattice with different sizes of the coarse graining vol-
ume Ω at inverse temperature β = 1000 with no next nearest neighbor bonds. a.
The spectrum of the eigenvalues of PCP is shown for three different choices of Ω
(inset), which consists of all particles within the first (Ω1 - light blue), second (Ω2 -
magenta) and third (Ω3 - dark green) nearest neighbor shells. The reference positions
of particles are shown by small yellow circles. The horizontal lines show the eigenval-
ues. Note the large gap between the largest eigenvalue and the rest of the spectrum.
b. The two degenerate eigenvectors corresponding to the largest eigenvalue of PCP.
Note that a nearest neighbor bond is being stretched and a next near neighbor bond
nearly perpendicular to it has been shortened. This mode is same as the one discussed
in Ref. [6]. This displacement tends to replace the six-fold neighborhoods by two five-
and two seven-fold neighbors producing a tightly bound dislocation–antidislocation
pair. c. and d. show that increasing Ω does not affect the nature of this mode.

with 4 zero eigenvalues. The non-zero eigenvalues correspond to the independently
fluctuating non-affine modes. We have now extended this calculation to include larger
Ω. Our results are shown in Fig. 3.4. We recover the two degenerate, non-affine modes
with the largest eigenvalue described in [6]. We see that these modes continue to be
present if one increases the size of the coarse-graining volume Ω1 < Ω2 < Ω3. At the
same time the gap between the first eigenvalue and the others increases significantly.

It is interesting that as the size of Ω increases, additional vibrational modes go on to
populate the lower eigenvalues, keeping the gap intact. We show later in this chapter
that this phenomenon is quite general and observed for many (but not all) lattices. We
will comment further on this observation in the discussion (Section 4.5).
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Fig. 3.5. Non-affine modes for square lattice with different sizes of the coarse graining volume
Ω. The parameters are k2 = 0.5, β = 1000. a. The spectrum of the eigenvalues of
PCP is shown for three different choices of Ω (inset). The color code is the same as
in Fig. 3.4b The two degenerate eigenvectors corresponding to the largest eigenvalue
of PCP. These modes tend to shift a row of atoms relative to adjacent rows c. and d.
show that, as in the triangular case, increasing Ω does not affect the nature of these
modes.

3.1.2 The square lattice in 2d

For the square lattice, we need to include both nearest and next nearest neighbor
bonds in order to satisfy the Maxwell criterion for stability [76], viz. for free bound-
ary conditions, a stiff frame consisting of p points in d dimensions should at least have
c = pd − d(d + 1)/2 connections among the points. We have also chosen the smallest
Ω such that all particles to which the central particle is bonded by nonzero interac-
tions are included. This yields an Ω containing four neighbor and four next neighbor
particles. Hence, one obtains PCP as a 16 × 16 matrix. This has 16 eigenvalues with
eight non-zero values. As the size of Ω and with it the degree of coarse-graining, is
increased one then observes the same effect on the square lattice as in the triangular
lattice (see Fig. 3.5). Again there is a gap in the eigenvalue spectra between the largest
eigenvalue and the rest; this gap increases with the coarse-graining scale chosen. Fig
3.5 shows, in addition to the coarse-graining volumes and the eigenvalue spectra, the
softest degenerate eigenmodes. The nature of the mode corresponding to the largest
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eigenvalue is somewhat different to the triangular lattice case. Instead of introducing
defects, it tends to shift the middle row of atoms with respect to its neighboring rows in
a direction parallel to the rows. One can easily see that this corresponds to a precursor
that can take a square lattice to a triangular one by a shuffle of alternate layers [35].
We now consider more complex lattices in 2d such as honeycomb and kagome.

3.1.3 The planar honeycomb lattice in 2d

Fig. 3.6. Non-affine modes and spectra for the planar honeycomb, with k2 = 0.5 and β = 500.
a. Schematic of the lattice and the coarse graining volume (pink shaded region) used,
with ellipses drawn around each pair of atoms that is in the same basis. b. The eigen-
value spectrum. Note that there is no single prominent eigenmode with a large gap as
in the triangular and square structures. c. Plots of the first three non-degenerate non-
affine eigenmodes in the order of prominence (magnitude of eigenvalue). Eigenmode
2 represents an incipient Stone-Wales defect.

The planar honeycomb (or simply honeycomb!) lattice occurs in many condensed
matter systems, the most noteworthy being graphene [77]. A honeycomb lattice is
essentially a triangular lattice with a two particle basis. As shown in Fig 3.6, a cell
(ellipse) indexed i has two particles labeled α ∈ {0, 1}. Each basis particle has three
neighbors and six next nearest neighbors. The coarse-graining volume for a honey-
comb lattice Fig. 3.6, is constructed as mentioned in Section 2.3 with r the next nearest
neighbor distance, i.e.

√
3a. Thus, Ω consists of a total of 17 pairs of particles. (The
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two particles in the basis each have 3 nearest neighbors and 6 next nearest neighbors,
giving 18 particle pairs; excluding from this the double-counted pair of basis atoms
yields 17 pairs.) As per the prescription, P can be constructed and will be a 34 × 34
dimensional matrix. The dynamical matrix is a 4 × 4 matrix with two eigenvalues
corresponding to the acoustic branches and the other two to the optical ones. These
eigenvalues and eigenvectors of the dynamical matrix are used to calculate the co-
variance matrix C as shown in Eq. (2.34). Our experience by numerical study of the
triangular and square lattices shows that increasing the size of Ω does not influence the
nature of the most prominent non-affine modes, although it does considerably increase
computational complexity.

The planar honeycomb structure has been studied in detail in an earlier publica-
tion [7]. We include here some of those results for completeness. The probability
distribution of χ is shown in Fig. 3.2 together with the results of other lattices. Fig. 3.6
shows the non-affine eigenvalue spectra. We observe that, in contrast to the triangular
and square lattice, there is no clear gap between the largest eigenvalue and the oth-
ers. We suspect that the presence of optical modes produces an eigenvalue spectrum
that does not have pronounced gaps between different modes. It has also been shown
in [7] that the nature of this spectrum remains unaffected if one softens the lattices
by reducing the value of spring constant k2. In fact, as one softens the lattice these
eigenvalues grow without bound, producing more non-affinity in the system. This is
obvious because C is proportional to the lattice Green’s function which itself diverges
when the spring constant vanishes.

Eigenvectors of PCP corresponding to the first three largest eigenvalues are plotted in
Fig. 3.6. Intriguingly, the second mode represents the precursor to a Stone-Wales (SW)
defect [80]. In SW a central bond flips by 90◦ creating pentagonal and heptagonal
voids. One of the questions that was not addressed in [7] was what, if any, is the effect
of introducing a bending rigidity [79, 81] to the bonds? We take up this issue below.

Bond bending rigidity may be modeled as a three body potential given by Eq.(3.2).
The dynamical matrix corresponding to bond bending can be obtained in closed form
(see Appendix A.1). The total dynamical matrix, which is the sum of the dynamical
matrices for bond stretching and bending, is used to calculate C.

Fig. 3.7 shows how the spectrum of non-affine (non-zero) eigenvalues of PCP changes
upon increasing the bending constant kb. We have included a similar calculation for the
triangular lattice for comparison. Because the triangular lattice is isotropic, addition
of a bond bending cost only stiffens the lattice and decreases the eigenvalues and con-
sequently their sum, χ. We see that 5-7 defect precursor modes as discussed above
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Fig. 3.7. Plot of the eigenvalues σi of PCP (colored lines, top panel) as a function of the bond
angle rigidity parameter kb, showing the effect of including bending rigidity of bonds
in the triangular a. and planar honeycomb b. structures. While the relative promi-
nence of the modes is unaffected in the triangular lattice except for the breaking of
degeneracy of some low probability modes, in the honeycomb lattice the mode corre-
sponding to the SW defect precursor (yellow) is strongly suppressed with increasing
kb (see text).

continue to be the most prominent modes in the system. Less importantly, the addition
of bond bending also breaks the degeneracy of some of the modes corresponding to
small eigenvalues.

In contrast to the triangular lattice, the relative prominence of non-affine modes in
the planar honeycomb is strongly dependent on the value of the bending constant.
Fig. 3.7 shows the first six eigenvalues against kb. Several crossovers among the dif-
ferent modes are visible in these spectra. We notice that the SW mode, which earlier
was the second most prominent mode in the system, becomes strongly suppressed as
one increases kb. This was to be expected because the SW defect requires that nearest
neighbor bonds become flexible. Our projection formalism is hence very general and
can pick out the dominant defect precursor modes for arbitary lattice symmetry and
interactions.

3.1.4 The Kagome lattice in 2d

The Kagome lattice structure is found in many natural minerals and has interested
physicists and chemists because of its unusual magnetic properties [1, 82]. Similar to
the planar honeycomb, a kagome lattice has a triangular symmetry, but with three basis
particles in each cell. Each particle in the cell has four nearest neighbor and four next
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nearest neighbors. The dynamical matrix (Appendix A.1) D(q) becomes a 6 × 6 matrix

Fig. 3.8. a. Schematic of the Kagome lattice and coarse-graining volume Ω (pink shaded re-
gion), b. the spectrum of non-affine modes and c. 1-3, the three most prominent
non-affine modes. Parameters used: k2 = 0.5, β = 100.

and has two acoustic branches and four optical ones. Fig. 3.8 shows the coarse-graining
volume Ω, which contains 21 pairs of particles up to the next nearest neighbor distance
so that P becomes a 42 × 42 matrix. Accordingly, PCP has 38 non-zero eigenvalues
corresponding to non-affine eigenmodes. The probability distribution P (χ) is shown in
Fig 3.2. Fig 3.8 shows the eigenvalue spectrum. Similarly to the planar honeycomb
we notice the absence of any large gap among the eigenvalues. The non-affine modes
for the largest eigenvalues are shown in Fig. 3.8. These modes turn out to be the
well known floppy modes [83]. If the next nearest neighbor bonds are stiffened or
bond angle dependent potentials are introduced, the amplitudes of these floppy modes
decrease, exactly as in the honeycomb lattice.

3.1.5 The simple cubic lattice in 3d

Our discussion of lattices in three dimensions begins with the simple cubic (SC) lattice,
having a single basis atom in a cubic cell with six nearest neighbor and twelve next
nearest neighbor particles. We assume that these particles are connected by springs
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Fig. 3.9. a. Plot of the eigenvalues of the SC lattice for three different values of k2: 0.25, 0.5
and 1.0. b. The non-affine mode corresponding to the largest eigenvalue for k2 = 0.5
and β = 1000. Note that this is similar to what is obtained for the square lattice.

with stiffness constant k1 for nearest neighbors and k2 for next nearest neighbors. The
dynamical matrix (Appendix A.1) can be calculated and has three acoustic branches
comprising one longitudinal and two transverse phonon modes. We proceed in a sim-
ilar fashion as in 2d to calculate C. The projection matrix has 54 eigenvalues out of
which 9 are zero corresponding to nine affine modes in 3d. Similar to the triangular
and square lattices in 2d, we find that a large gap exists between the largest eigenvalue
of PCP and the rest, see Fig. 3.9. For the SC, we find that three degenerate modes
correspond to this largest eigenvalue, one of which is shown In Fig. 3.9. Note that the
displacement pattern in the blue shaded plane in SC is similar to that in the square
lattice. Indeed the SC lattice may be regarded as a stacking of 2d square lattices. The
other two degenerate modes show the same movement in the other two orthogonal
planes of the SC. This leads to the interpretation that the most prominent non-affine
mode of the SC lattice simply tend to convert the stacked planes from square to trian-
gular symmetry, hence generating 3d close packed structures [1].

The eigenvalue spectra in Fig. 3.9 also show that χ decreases as one stiffens the
lattice by increasing the stiffness constant k2. However, this increase in stiffness does
not affect the qualitative features of the spectrum including the continuing presence of
a gap.
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Fig. 3.10. a. Plot of the non-affine eigenvalues of the BCC lattice for three different values of
k2: 0.5, 0.75 and 1.0 at β = 1000. b. One of the non-affine modes with the largest
eigenvalue for k2 = 0.75.

3.1.6 The body-centered cubic lattice in 3d

The body centered cubic (BCC) lattice may be thought of either as a system with a
single-atom basis, or as a SC lattice with a two atom basis [1]. For reasons of compu-
tational simplicity we choose the former view to construct our coarse-graining volume:
this consists of 14 particles with 8 nearest neighbors having bond stiffness k1 = 1 and 6
next nearest neighbors with bond stiffness k2. Since Ω comprises 14 particles, in three
dimensions P becomes a 42×42 matrix, and has 33 non-zero eigenvalues corresponding
to the non-affine part.

After performing the projection analysis, we find that a gap below the largest eigen-
value is present regardless of the choice of k2. We notice that as for all other lattices dis-
cussed above, 〈χ〉 decreases with an increase in the stiffness of the lattice, see Fig. 3.10.
BCC has three degenerate modes related to the largest eigenvalue. One of these is
shown in Fig. 3.10, where we notice that the centre particle has moved along the [001]
direction. The other two modes show a displacement of the centre particle in the two
orthogonal directions. These dominant modes together represent the motion of the
body centered particle to one of the six faces of the cubic unit cell, which can be viewed
as generating locally a single atomic plane of the FCC lattice by an atomic shuffle.
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[111]

Fig. 3.11. a. Plot of eigenvalue spectra of FCC for different choice of k2 : 0.25, 0.5 and 1.0 at
β = 1000. b. The eigenmode corresponding to the largest eigenvalue for k2 = 0.5.
c. Same as b. but viewed from the [111] direction. Notice that the central particle
has displaced out of plane and sits below a particle from a different stacking layer,
resulting in a stacking fault in the FCC system.

3.1.7 The face centered cubic lattice in 3d

The coarse-graining volume for the face centred cubic (FCC) lattice, we construct
around a single atom basis, similar to the BCC case. It consists of 12 nearest neigh-
bor particles and 6 next neighbors. We thus have 18 × 3 = 54 eigenvalues of PCP, of
which 9 eigenvalues representing affine deformations are zero. The eigenvalue spec-
trum again shows a prominent gap between the three largest degenerate (and mutually
orthogonal) eigenmodes and the rest. It is also obvious from the spectra that 〈χ〉 de-
creases as one increases the stiffness of the lattice by increasing k2.

One of the three non-affine modes corresponding to the largest eigenvalue is shown
in Fig. 3.11. We show later that this mode is a precursor to either a slip or a stacking
fault [1, 3]. The other two degenerate modes show the analogous deformation in
orthogonal directions.
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3.2 Coupling between affine and non-affine
displacements

While the affine and non-affine components of the displacements are orthogonal to each
other by construction, they couple at higher order [5]. This has the physical meaning
of suggesting that at higher strains, fluctuations which tend to create lattice defects
become more probable. While this has been noted in the triangular lattice [5, 37], here
we undertake a systematic study involving many lattices.

In Section 2.3 we showed that this coupling is determined by the commutator [P, C].
We have computed this commutator for all the lattices considered in this paper and
the results are shown in Table. 3.1. It is interesting to see that in 2d open lattices like
the planar honeycomb and kagome have much larger values of this coupling than the
mono atomic, more close packed ones. In 3d no marked trend is observed among the
cubic crystal family; the differences are too small to be significant and may have a weak
dependence on details of the interactions even after normalization.

Lattice Type ||C|| ||[P,C]||
||C|| Parameters (k2,kb)

2d triangle 3.874 0.031 0.5, 0

2d triangle 1.290 0.013 0.5, 0.5

2d square 5.055 0.037 0.5, 0

2d honeycomb 9.362 0.160 0.5, 0

2d honeycomb 4.897 0.135 0.5, 0.5

2d kagome 9.910 0.113 0.5, 0

3d SC 9.361 0.024 0.5, 0

3d BCC 6.994 0.020 0.75, 0

3d FCC 7.279 0.025 0.5, 0

Tab. 3.1. The Frobenius norm (the square root of the sum of the absolute squares of the el-
ements) of the commutator [P, C], made dimensionless by dividing it by the corre-
sponding norm of C, for a number of lattices in 2d and 3d at β = 1. Corresponding
parameter values for stiffness are quoted in the last column. Also note that the norm
of P is essentially the square-root of total number of non-affine modes in each case.
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Fig. 3.12. Normalized χ correlations, Cχχ(ρ) = (〈χ(0)χ(ρ)〉−〈χ(0)〉2)/
(
〈χ(0)2〉 − 〈χ(0)〉2

)
, for

several different lattices as a function of distance ρ = R · x̂/dnn measured in units of
the nearest neighbor distance, dnn in the reference lattice along one coordinate axis.
Brown and blue are for square and triangle lattices (dnn = a); orange and red are
for FCC (dnn = a/

√
2) and BCC (dnn = a

√
3/2) respectively.

3.3 Spatial correlations for 2d, 3d mono-atomic
lattices

We now look at two-point spatial correlations of χ and the affine strains e. These have
been extensively studied for two dimensional lattices both numerically [61, 63] and
analytically [5–7]. The spatial correlation of the affine strain is important because it
offers a way to obtain elastic properties of colloidal crystals from optical microscopy
images [47].

The spatial correlations of χ for some of the lattices considered in this paper are
shown in Fig. 3.12 in a single plot. These correlations are nearly isotropic and are
plotted as a function of distance ρ measured in the units of nearest neighbor distance
dnn along one coordinate axis. The values of dnn for different lattices are mentioned
in Fig 3.12. We observe that the nature of the correlation function is similar for all
lattices. It is a sharply decaying function that essentially vanishes after the second
neighbor shell. More quantitatively, we observe that the correlations decay somewhat
faster in higher dimensions.
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a.

b.

c.

SC BCC FCC

Fig. 3.13. Iso-strain surfaces for the strain-strain correlation functions in Fourier space and
in the q → 0 limit for SC, BCC, FCC lattices. Figures shown for a. deviatoric
(exx − eyy − ezz), b. shear (exy + eyx) and c. volume (exx + eyy + ezz) strains.
The values of the correlations at the iso-surfaces are different in each case and have
been chosen for ease of presentation. They are listed in the Appendix A.2 along with
the full algebraic expressions used to plot the iso-surfaces. The other parameters
used are k2 = 1/6 and β = 1 throughout.
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The spatial correlations for the affine strains may be obtained using the procedure
outlined in Section 2.3.1. These have a more non-trivial structure. They are anisotropic
and can be long-ranged along particular directions [63]. In the q → 0 limit, analytic
expressions for these correlation functions can be derived quite easily. For example,
as defined in Eq. (2.47), the strain correlation functions for the square lattice are,
β〈e2

v〉(q) = Qv/Q, β〈e2
u〉(q) = Qu/Q, and β〈e2

s〉(q) = Qs/Q with the abbreviations

Q = q2
xq2

y + k2
(
q2

x + q2
y

)2
+ k2

2
(
q2

x − q2
y

)2

Qv = 2q2
xq2

y + k2
(
q2

x − q2
y

)2

Qu = 2q2
xq2

y + k2
(
q4
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xq2

y + q4
y

)

Qs =
(
q4

x + q4
y

)
+ k2

(
q2

x − q2
y

)2
(3.3)

Similar expression for the triangular lattice have already been discussed in [5]. We
observe that for k2 = 1/2, where the square lattice becomes elastically isotropic [84,
85], the expressions in Eq. (3.3) differ from those for the triangular lattice only by an
unimportant overall factor. The general shape of these correlation functions, viz. the
“butterfly pattern”, is also similar to results obtained in colloidal glasses using video
microscopy techniques [86].

In three dimensions, the correlation functions are considerably more complicated,
although analytic expressions in Fourier space in the small wave-number limit can still
be worked out with some effort. The algebraic expressions are given in Appendix A.2
and they are plotted in Fig. 3.13.
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3.4 Summary and conclusion

In this chapter we have studied the nature of thermally excited non-affine atomic dis-
placements for a number of crystalline solids in 2d and 3d. In all cases, we showed
the non-affine modes serves as the precursors to commonly observed lattice defects.
We have discovered several features that are common to many lattice systems although
close packed and open lattices show somewhat different properties. While in close
packed lattices, the contribution to χ is dominated by a single non-affine mode (or
degenerate, symmetry-related class of modes), in open lattices there is no such pre-
dominance. Further, in open lattices, the contribution of the different modes is much
more sensitive to details of the interactions and they are more strongly coupled to affine
fluctuations. Additionally, we observed that for both lattices in 2d and 3d, the spatial
two-point correlation for χ decays exponentially; though somewhat faster in 3d.

In the next chapter we show how non-affine fluctuations in crystals are related to
deformation modes.
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Non-affine displacements
and deformation modes

4

4.1 Deformation of solids: a brief background

In earlier chapters we have studied the nature of thermally excited non-affine atomic
displacements for a number of crystalline solids in 2d and 3d. We have discovered
several features that are common to many lattice systems although close packed and
open lattices show somewhat different properties. While in close packed lattices, the
contribution to χ is dominated by a single non-affine mode (or degenerate, symmetry-
related class of modes), in open lattices there is no such predominance. Further, in
open lattices, the contribution of the different modes is much more sensitive to details
of the interactions and they are more strongly coupled to affine fluctuations.

One of the important findings of earlier work [6, 7] was that non-affine displacement
fluctuations serve as precursors to the formation of defects. In the triangular lattice,
in the presence of strain, a dislocation-anti-dislocation pair separates and produces a
slip plane [37] that has high values of χ. In this chapter we conclude this analysis
by carrying out a simple exercise in order to better understand the relation between
non-affine modes and defects[39, 40, 87, 88].

4.2 Deformation of the triangular solid

We consider, first, a triangular lattice where a slip is introduced such that a part of
the lattice moves a lattice spacing in a close packed direction, compared to the rest.
In the bulk, there is no contribution to χ as all atoms undergo either no motion or
just a uniform translation. Thermal vibrations are neglected in this calculation and
those that follow. We choose a coarse graining volume corresponding to the smallest
Ω as shown in Sec. 3.1.1 centered on an atom lying in the slip plane. The Ω at the
interface of the slipped and un-slipped regions is, of course, deformed (see Fig. 4.1).
This deformation cannot be described by a homogeneous affine transformation of Ω
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and therefore contributes to χ. Including thermal contributions would produce a P (χ)
that is identical to the ones calculated in the bulk (Section 3.1), while in the vicinity of
the slip, P (χ) would be displaced to higher χ values [37].

i.

ii.

Fig. 4.1. a. Relative contribution from non-affine modes when a slip is introduced by translat-
ing the bottom half of a triangular lattice along a close-packed direction by a lattice
spacing. b. The corresponding contribution of the four affine modes. Note that the
largest contributions come from shear and rotation. The insets show the configura-
tion of atoms in Ω after the slip (a-i) and the separate non-affine (a-ii) and affine (b)
contributions. See text for details.

One can now project this deformation onto the non-affine and affine modes computed
from thermal averages of displacements to find the contribution of individual modes to
this deformation. In Fig. 4.1, we plot the bar-graph of the components (ci)2 obtained
by projecting onto the affine and non-affine modes for this deformation, where ci is the
coefficient corresponding to the ith mode in the expansion of the displacement as a su-
perposition of non-affine and affine modes. We see that the largest contribution comes
from the first two non-affine modes as expected. There is also a non-zero contribution
from the affine modes, with the affine and non-affine modes contributing equally over-
all. This may be easily understood from the insets shown in Fig. 4.1a and b. In Fig. 4.1a
(inset i), we show the configuration of particles where the two atoms belonging to the
bottom-most row are displaced to the left by a lattice spacing relative to the upper two
rows. The total non-affine contribution is shown in inset ii of the same figure. This
shows a relative displacements to the right of the middle row consisting of three atoms.
On the other hand, the affine contribution to the slip shown in Fig. 4.1b (inset) consists
of homogeneous shear and local rotation as verified from the bar-graph. It is clear that
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the sum of the affine and non-affine displacements gives rise to the slipped configura-
tion shown in Fig. 4.1a (inset i). The affine deformation produces an internal shear
stress at the slip plane. When a crystal slips in response to an external homogeneous
shear, the internal stress cancels the external stress locally. By introducing a finite den-
sity of such slip planes, any homogeneous stress may be expelled. In Ref. [37] such an
expulsion process was shown to lead to yielding of crystalline solids at any shear stress,
however small. Since the non-affine strains corresponding to the largest eigenvalues
do not depend on the choice of Ω (see Section 3.1.1), the mechanism described is quite
general.

4.3 Deformation of the square solid

We now turn to the square lattice. It is known [35] that a square lattice can transform
to a triangular lattice by either a homogeneous, affine, shear or by a non-affine de-
formation where alternate rows of atoms shift by half a lattice spacing together with a
homogeneous relaxation of the lattice parameters. We show this deformation in Fig. 4.2
(inset) and compute the projection onto the non-affine modes. As expected, there is
an overwhelmingly large contribution from the non-affine mode with the largest eigen-
value. There is no affine component for this deformation.

Fig. 4.2. Non-affine contribution in the square lattice when the middle row is displaced by half
a lattice spacing. Note that this transformation tends to produce a triangular lattice
symmetry starting from the original square lattice.
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4.4 Deformation of the FCC solid

For the FCC lattice, we first create a slip along one of the close-packed planes, simi-
lar to the triangular case. Fig 4.3 shows the original position (triangle with a dotted
boundary) and the new position (blue shaded triangle) of the closed packed plane. The
bar-graph of ci

2 corresponding to non-affine and affine modes makes it clear that slip
in the FCC lattice behaves similarly to a slip in the triangular lattice: we also observe
here that the total contributions of the affine and non-affine modes are equal. In the 3d
FCC lattice apart from a slip, one can also consider a stacking fault. Fig 4.3 also shows
this deformation where the closed packed plane is displaced by half a lattice parameter.
The shaded blue region in Fig 4.3 represents the new position of the closed packed
plane. Again during a stacking fault it is observed that the non-affine and affine parts
contribute equally and the maximum contribution comes from the first three non-affine
modes.

Fig. 4.3. Contribution from different a. non-affine and b. affine modes when one introduces a
slip in the FCC lattice. The inset shows a schematic diagram of the lattice as seen from
the [111] direction. The original position of the close packed lattice plane is shown as
a triangle with a blue dotted boundary and the final position as a blue shaded triangle.
Contribution from a stacking fault from c. non-affine and d. affine modes. The inset
shows, as before, the original and final positions of a close packed plane of atoms.
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4.5 Summary and conclusion

The simple exercise described in this chapter therefore strengthens our claim that the
non-affine modes that belong to the largest eigenvalues of PCP are related to fluc-
tuations that tend to nucleate defects. We have seen in [37] that these fluctuations
condense under external strain to cause plastic deformation in a 2d triangular crystal.
The computations presented here show that non-affine modes deduced from small har-
monic fluctuations at T > 0 are able to describe important processes that occur during
large T = 0 deformations. We hope that this knowledge will enable us to study in detail
mechanical properties of 3d cubic lattices.

We believe that our work brings out an interesting aspect concerning defects and
the dynamics of deformation in crystalline solids [1, 3, 23]. Atomic fluctuations that
generate defects in close packed crystals are shown to be determined by the non-affine
modes with the largest eigenvalue. Representing fluctuations in crystals as consist-
ing of smooth phonons and singular defects therefore amounts to making a “largest
eigenvalue approximation” and neglecting other non-affine modes that make smaller
contributions to the total χ. This approximation lies at the heart of all dislocation based
theories of crystal plasticity [3, 23, 89, 90]. Such an approximation is excellent when
the defect-like mode is separated from the others by a large gap in the spectrum of non-
affine eigenvalues as in the triangular (Section 3.1.1) and FCC (Section 3.1.7) lattices.
However, the approach may not work for crystal lattices where such a gap does not exist
or is too small, e.g. for the planar honeycomb (Section 3.1.3) or kagome (Section 3.1.4)
structures. In amorphous matter also this approximation may not be so useful, even if
dislocation-like structures are identifiable [27]. In such cases, new continuum theories
of deformation that include all non-affine modes (or at least a large class of them) may
be needed. Furthermore, anharmonic effects may be important in amorphous systems,
such that the harmonic approximation may itself break down [91, 92]. A more complex
theory may be able to address such issues. Such a theory does not exist at present and
we hope that our work provides sufficient motivation to the community for thinking
along these lines.

In Chapter 2- 4, we have developed a procedure for decomposing atomic fluctuations
into affine and non-affine parts. The non-affine displacements have been shown to be
precursors for defects and are related to deformation modes of the solid.

In the next two chapters we show how this knowledge may be used for practical pur-
poses viz. stabilising patterns in colloidal crystals and in swarm of drones. The key idea
involves our ability to selectively bias non-affine fluctuations using the thermodynami-
cally conjugate field hX [6]. This field is analogous to external stress which couples to
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the affine part of the displacements, and can influence the formation of defects. Natu-
rally, we ask is it sufficient to suppress the non-affine modes to stabilise the lattice ? If
it is the case, does it depend on the nature of interactions or symmetry of the lattice.
We try to answer these question in next chapter.
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Stabilising colloidal crystals
5

In this chapter we show that any colloidal crystal of any desired symmetry can be
stabilized regardless of interactions if non-affine fluctuations are suppressed using ap-
propriate conjugate field.

Discovery and development of techniques to form stable, complex assemblies of col-
loidal particles has emerged as a rather vibrant sub-field of soft condensed matter
physics and materials science [8–11]. Colloidal particles, synthesized using a variety of
routes into an array of shapes and sizes from nanometers to microns are now, readily
available for use [11]. Apart from many technological applications, assemblies of such
colloids into ordered crystals offer us unique insights into properties of ordinary solids
and their behaviour. This is facilitated by the relatively large size and consequent slow
timescales [54, 93, 94] of a colloidal particle enabling one to use simple optical means
to observe and manipulate them [47, 95, 96]. One encounters, mainly, two paradigms
related to the assembly of colloids into complex structures.

In the first case, the interactions between colloidal particles are tuned. This may be
done either by controlling the shape [97], by alloying [98, 99] or by adding specially
reactive patches or tethers [100, 101]. Apart from this, confinement, either between
glass plates [58, 59] or at an interface [102, 103], induce effective interactions be-
tween colloidal particles influencing their structure. While one obtains a degree of
control over the symmetry and properties of the colloidal crystals so produced, produc-
ing complex structures is difficult and needs careful synthesis and/or cumbersome fine
tuning of many parameters.

On the other hand, one may also produce ordered colloidal crystals using templates
[104]. These templates may be either permanent, such as etched onto a surface, or
reconfigurable, if produced by optical means [57, 105, 106]. The latter technique has
the advantage that a large variety of crystal [105], quasi-crystal [57] and even random
structures [106] may be produced. Nevertheless, periodic crystals induced by static
templates necessarily suffer from a fundamental flaw.

While crystallisation due to inter-particle interactions, necessarily breaks the con-
tinuous translational and orientational symmetry of the liquid spontaneously, uniform
translations of the crystal as a whole in any direction or global rotations about any axis
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still do not cost energy. This gives rise to Goldstone modes viz. acoustic phonons whose
frequencies vanish with increasing wavelength (or decreasing wavenumber) [1]. On
the other hand, templates break translational invariance explicitly by destroying spatial
homogeneity [107]. Uniform translations of the whole crystal in one or more direc-
tions now cost energy and some or all vibrational modes become massive, i.e. their
frequencies do not vanish with decreasing wavenumber. In the extreme case of deep
periodic traps, particles do not interact with each other at all and oscillate indepen-
dently in isolation, making the spectrum of vibrational frequencies resemble that of
a trivial Einstein crystal [2]. This has a profound influence on scattering processes at
small wave-numbers since fewer low energy vibrational modes remain. While for many
applications, such as colloidal epitaxy [11, 104], this may not present a problem, for
many others it is an issue to be addressed. For example, constructing colloidal mod-
els of solid-solid transformations [108] and interfaces [45], mechanical behaviour of
crystals [3], crystal - glass transition [60] etc. require that such spurious effects be
avoided.

The rest of the chapter is organised in the following way. In the next section we in-
troduce our proposal, which uses a feedback mechanism to stabilise target structures
for any kind of colloidal particle. This is followed by our specific results for, first a
harmonic network of particles as a test case and then a colloidal solid modelled by an
isotropic pair potential. We then indicate how our scheme may be generalised to more
complex structures and to higher dimensions. Towards the end, we explain the mech-
anism behind our proposal and discuss its experimental realisation by comparing our
strategy to other existing methods. Finally we conclude with a summary and outlook
for future work.

5.1 The feedback loop

First, the target lattice ST , is “read in” as a set of reference coordinates {Ri} (see
Fig. 5.1). We assume, for simplicity that ST is a Bravais lattice with a single particle ba-
sis. Later we show how this procedure may be generalised to more complex structures.
Unlike a physical template, the target lattice or structure, which we wish to stabilise,
remains in the memory of a computer coupled to an optical setup. Note that there is
no restriction on the choice of {Ri}. Next, around each particle i, we fix a neighbour-
hood Ω containing a fixed set of tagged particles whose instantaneous coordinates ri

are recorded. Particle positions undergo thermal fluctuations due to the presence of the
solvent. Using the well defined projection formalism, which we have established in pre-
vious publications [5, 6], we separate these thermal particle displacements into affine
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Fig. 5.1. Schematic diagram showing the steps involved in generating feed-back controlled op-
tical traps. The particle coordinates are obtained from video microscopy. The neigh-
bourhood of each particle is recorded and the force Fχ(ri, Ri) (see text) calculated
from the Hamiltonian 5.1. Next, the positions of optical traps needed for applying
these forces are calculated and the traps deployed. If this procedure is continuously
repeated for all particles at a rate comparable to typical vibrational frequencies of the
colloidal particles, a uniform stabilising field is obtained.

and non-affine subspaces. A laser tweezer is used to exert additional forces, Fχ(ri, Ri)
to particle i which bias displacement fluctuations so that the non-affine component of
the displacements is suppressed. Since Fχ depends on instantaneous particle positions,
they need to be be continuously updated by tracking particle trajectories in real time.
Since intrinsic timescales of colloids are large, this is achievable using current video
microscopic and spatial light modulation technology [109]. We derive below Fχ for
any given ST .

The additional forces are computed from the following extended Hamiltonian [6, 30],
H = H0 + HX . Here H0 represents any Hamiltonian for interacting particles and,

HX = −hX

N∑

i

∑

jk∈Ω
(uj − ui)TPj−i,k−i({Ri})(uk − ui). (5.1)

HX involves the “projection operator” P and the particle displacements ui = ri − Ri.
The projection operator is a function only of the reference lattice and, for any particle
i, is given by P2 = P = I − R(RTR)−1RT and j ∈ Ω is a neighbour of i . Note that
Eq.(5.1) preserves translational invariance viz., ui → ui + constant. One can also show
(Chapter 2) [5, 6, 34], that HX = −hX

∑
i χi where χi is the least square error made

replacing particle displacements in Ω by the “best fit” affine strains [41]. The quan-
tity χi = ∆TP∆ where ∆ is the column vector of displacement differences [5, 34]
with components ∆jα = uα

j − uα
i between particles i and all its neighbours j within

Ω. The projection operator therefore projects out the non-affine part of ∆ and χi is
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the local non-affine parameter. Finally, the forces F i
χ = −∂HX/∂ui. We show below

that suppressing non-affine fluctuations using negative values of hX is sufficient to stabilise
ST . The Hamiltonian HX introduces new interactions among particles, which guaran-
tee that the target lattice ST is stabilised as long as |hX | is larger than a system size
dependent threshold.
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Fig. 5.2. a. Phonon dispersion curve ω(q) plotted along high symmetry directions for a square
lattice network of vertices connected by springs. Both nearest neighbour and next
nearest neighbour springs with spring constants k1, k2 > 0 are needed for stability.
The longitudinal (transverse) modes are shown with solid (dashed) lines. The colours
denote k2 = 0 (black), 0.1 (red) and 0.5 (blue). b. Phonon dispersion for k2 = 0 but
now for various values of hX = 0 (black), 0.003 (red), 0.03 (blue). Insets show the
interaction volume Ω in the square lattice with bonds (left) and the high symmetry
points of the corresponding Brillouin zone (right)

5.2 Application to colloidal crystals

5.2.1 Simple square lattice with harmonic interactions

It is instructive to demonstrate our procedure first for the case of N particles arranged
as a 2d square lattice (see Fig. 5.2) interacting according to the Hamiltonian,

H0 =
N∑

i=1

p2
i

2m
+ k

2
N∑

i=1

∑

j∈Ω,i<j

(|rj − ri| − |Rj − Ri|)2. (5.2)

Here pi is the momentum of particle i, m the mass, ri are the instantaneous positions,
and Ri is the reference position in the target lattice. In this system, the length and
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energy scales are set by the lattice parameter l, and kl2 respectively. The time scale
is set by

√
m/k. We may chosee l = m = k = 1 without loss of generality. The

dimensionless inverse temperature is given by β = kl2/kBT , with kB the Boltzmann
constant. The interactions have a range equal to the size of the coordination volume Ω.
The nearest and next nearest neighbour vertices are connected by harmonic springs of
strengths k1 = 1 and k2 respectively. The square lattice is mechanically unstable in the
limit k2 → 0 due to softening of transverse phonon modes [110]. This is illustrated in
Fig 5.2 a where we have plotted the phonon dispersion ω(q) for this harmonic square
network for three different values of k2. For k2 = 0, frequencies correspond to the
transverse mode becomes zero, resulting in an unstable square lattice. We now add
the term proportional to hX in (Eq.5.1) to the harmonic Hamiltonian H0 using the
interaction volume, namely, the first and second neighbour shells of the square lattice
as our choice of Ω (see Fig. 5.2 inset). The dynamical matrix [1, 2], corresponding to
the full Hamiltonian H can be written as Dµν = Dµν

0 +Dµν
X , where Dµν

0 is the dynamical
matrix from H0 and

Dµν
X (q) = −hX

∑

R

∂2X

∂u(R)µ∂u(0)ν
e−iq·R (5.3)

with the lattice sum over the reference set {Ri}. After completing the sum over the
square lattice, we obtain Dµν

X (q) = 2hXAX(q)δµν (details in Appendix B).

The function AX(q) ∼ q4 for small wave-numbers [32] so that DX(q) does not affect
the elastic properties, e.g. the speed of sound, of a mechanically stable lattice. Further,
these results do not depend on the nature of H0. In Fig. 5.2b we plot the resulting
phonon dispersion curves all at k2 = 0 but for three different values of hX . As hX is
made more negative, the transverse phonon mode appears to revive. One must note
however that as q → 0 the nature of AX(q) dictates that the speed of transverse sound
vanishes in the hydrodynamic limit. Nevertheless, for finite lattices, this limit is never
reached since wave-numbers are cut off at q = 2π/L where L ∝ N1/d is the linear
system size.

5.2.2 Simple square lattice with Gaussian interactions

Consider, next, a system of particles interacting by the soft, purely repulsive, “Gaus-
sian core” model potential (GCM) [111, 112] where the harmonic interaction between
particles i and j is replaced by the funtion

Vij = ε exp(−r2
ij/σ2).
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Fig. 5.3. a. Phonon dispersion curve ω2(q) plotted along high symmetry directions for a square
lattice of particles interacting with the GCM potential at ρ = 0.5 and T = 1 × 10−3.
The small q region where ω2 < 0 is shown in the inset. We follow the same convention
as in Fig. 5.2. There are two sets of curves for hX = 0 (red curves) and hX = −0.5
(blue curves). b. A stability diagram for finite size square lattices constructed from the
dispersion curve in a. The green shaded region represents −hX values below which
the square lattice becomes unstable (ω2(q) < 0). We have also marked six points on
the graph such that black (white) circles denote stable (unstable) square lattices.

Fig. 5.4. a. Configurations obtained from Monte Carlo simulations after 6×106 MCS arranged
according to the corresponding points marked off in Fig 5.3b verifying the stability
condition. Colours correspond to the local value of χ. b. P (χ) obtained from the
equilibrated configurations where the square lattice is stable (top) and unstable (bot-
tom). The data points are computed from the results of our simulations and the lines
are predictions of the harmonic theory [7]. The configurations and the curves are
labelled by the corresponding hX and N values.

Here rij = |ri − rj| and the parameters ε and σ set the energy and length scales re-
spectively and may be taken as unity. The GCM has been used to describe interacting
star polymers which form a number of interesting solid phases in three dimensions.
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In 2d, this system freezes into a triangular lattice with a possible intervening hexatic
phase [113, 114]. GCM is also useful because the simple form of Vij makes many
analytic calculations possible. We study the model at reduced density ρ = 0.5 and tem-
perature T = 1 × 10−3 where a triangular solid is stable [114]. The temperature used
corresponds to about a tenth of the melting point of the stable triangular solid at this
density. In general, we found that temperature plays a relatively minor role as long as
anharmonic effects do not dominate and our results remain effectively valid even quite
close to the melting point.

When particles interacting with the GCM potential are arranged in a square lattice,
one obtains a mechanically unstable solid. Small displacement fluctuations from the
ideal square lattice positions (where forces still vanish due to symmetry) makes the
solid deform into the stable triangular structure via soft transverse modes [110]. This
is clear from the calculated dispersion curve shown in Fig. 5.3a for hX = 0.

We now turn on hX defined exactly as in the case of the network. As hX is decreased
below zero, again, we see a revival of the transverse phonon mode. Unlike the network
however, for all hX , the transverse mode now has ω2 < 0 in a small region of q → 0.
Making hX more negative can, nevertheless, restrict this region to extremely small
q values which are not accessed by a solid of finite size due to the infra red cut-off
discussed earlier. Since within a harmonic approximation, temperature enters only as
a pre-factor, this leads to a T independent “stability diagram” as shown in Fig 5.3b.

To verify the stability diagram presented in Fig. 5.3b we perform Monte Carlo simu-
lations with standard Metropolis updates [48] of a GCM solid with various N and hX

values keeping ρ and T same as before, equilibrating the system for a minimum of 106

Monte Carlo steps (MCS) starting from an initial square lattice. To check our results we
obtained the probability distribution of the non-affine parameter P (χ) and compared it
with the predictions from harmonic theory using the calculated dynamical matrix Dµν

as input [5, 7].

Equilibrated configurations from our simulations are presented in Fig. 5.4a. The hX

and N values for these configurations are marked in Fig. 5.3b It is clear that these
results follow the expectations from our stability criterion. Once the stability threshold
is breached, the square lattices destabilise due to q → 0 modulations. The local non-
affine parameter χ rapidly rises as the crystal becomes unstable and is shown as a
colour map. For all the stable square solids studied, our results were indistinguishable
from the theoretical prediction though they deviate, as they should, if instability sets in
(Fig. 5.4b). If ρ is increased, the harmonic approximation becomes more accurate and
the magnitude of hX needed to stabilise square lattices becomes even smaller.
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Fig. 5.5. Typical particle configuration from the simulation performed to stabilise complex and
simple lattices. Particles in the simulation has Gaussian interaction with the param-
eters defined in the text and hX = −2. In the beginning, non-affine forces are de-
termined from the projection matrix P defined for kagome lattice. At latter time t,
the projection matrix was switched from one lattice symmetry to the other. a. Typ-
ical configurations of stable lattices at different times. b. Plot of global non-affinty
parameter X as a function of time. Signature of this switching is present in the peak
values of X. Our simulations shows that complex lattice can be stabilised and the
symmetry of the lattice can be changed at will. Note that at each switching of the
projection matrix P, the density of the lattice has been reduced by increasing the size
of the simulation box. This is done in order to avoid kinetically arrested states.

5.2.3 Complex open lattices

We now indicate how our procedure may be generalised in a straight forward manner
to periodic crystalline structures of greater complexity. These lattices are “open” in
the sense that their packing density is much lower than the “close-packing” density for
the dimensionality considered and are usually metastable or unstable. The only close
packed structure in 2d is the triangular lattice, while in three dimensions (3d), there
are a large number of ordered close packed structures possible which are obtained
by stacking 2d triangular planes in specific sequences. The face-centered cubic and
hexagonal close backed lattices being the most common ones [1, 2]. Open lattices may
be of two kinds. Firstly they may be sparsely coordinated primitive lattices. Maxwell’s
condition for stability [76, 83] requires that the coordination number, z must be strictly
> 2 × d, which amounts to z > 4 in 2d and z > 6 in 3d. The square lattice in 2d and the
simple cubic lattice in 3d are marginal having 4 and 6 nearest neighbours respectively.
Including the second coordination shell while constructing the coarse graining volume
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Ω is essential in these cases. This ensures that phonon modes which are soft, such as the
shear modes encountered in the 2d square lattice, involves particles within Ω. These
modes need to be suppressed in order to to ensure stability of the lattice.

Open lattices may also result from decorating a primitive lattice with a basis i.e. a
motif consisting of more than one inequivalent particles. For example, in 2d one has
the planar honeycomb lattice where a dimer replaces every site of the triangular lat-
tice [31]. Similarly, in the Kagome lattice, the equivalent motif contains five particles
arranged as a pair of equilateral triangles, which share a vertex [83]. In 3d, the dia-
mond cubic structure contains repeated vertex sharing tetrahedra.

Such lattices also contain “floppy” modes which involve relative twists of the basis
with respect to the rest of the particles in the structure [7, 83]. In the planar honeycomb
structure localised modes representing a twist of the dimer results in the creation of a
Stone-Wales defect [7]. The coarse graining volume needs to be large enough to be
able to describe such modes and Ω needs to contain all symmetry dictated particles
belonging to copies of the basis, centred on each site of the primitive lattice. The
single parameter hX may then be used to suppress these modes. In this case therefore,
our formulae for the relative displacement ∆ and projection P matrices need to be
constructed accordingly and is discussed in Chapter 2.

Once a suitable Ω is chosen, NΩ, R and P are known and the feedback loop can be
implemented exactly as discussed earlier. Fig 5.5 shows the configurations of stabilised
complex lattices obtained by minimising non-affine displacements. We also show that
by switching the projection matrix P, during the simulation, is sufficient to change the
symmetry of the lattice. As the complexity of the lattices increase, the calculation of the
forces becomes more involved but always scale linearly with NΩ. Real time feedback is
therefore still limited by the response time of the optical system and not computation.

5.2.4 Stabilisation mechanism

We begin by commenting on the mechanism by which the ST structure is stabilised.
Consider the two crystal lattices the target, ST , and the equilibrium structure that the
solid prefers without hX , viz. SE. The lowest energy path from ST to SE (a) may in-
volve non-affine displacements of particles within Ω, or “atomic shuffles” or (b) may be
purely affine as is the case of structures connected by a group-subgroup relation [115].
Possibility (a) is easy to analyse since, in this case, the term involving hX in Eq.(5.1)
increases the energy of SE relative to ST stabilising the latter; any small fluctuation
taking ST → SE always cost energy. Possibility (b) is more subtle.
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Fig. 5.6. Configurations showing the recovery of the square lattice after an initial distortion:
a. The square lattice of 2500 GCM particles at ρ = 0.5 and T = 1 × 10−3 was distorted
by displacing alternate rows of particles by half a lattice spacing (see schematic inset)
producing a triangular lattice close to the SE structure (i). Under a stabilising field
of hX = −2.0 the target lattice quickly recovers as seen in ii (4.8 × 104 MCS) and
iii (24 × 104 MCS). b. Here we produce a patch of triangular lattice within a square
matrix (i) and again let the solid recover the square structure: (ii and iii as above)
under the influence of the same field as in a. The particles are coloured according to
the value of the local χ values.

For example, both square and triangular crystals may be considered as special cases
of a general oblique lattice and one can be obtained from the other by a purely affine
transformation. Along this transformation path, which involves a bulk homogeneous
strain, therefore, hX will not contribute. However, such an event is statistically unlikely
except for extremely small systems. What is more likely is that a small patch of particles
locally transforms to the SE structure creating χ at the interface. Within classical nucle-
ation theory [1] the free energy cost of such a patch of size Lp is Fp = A∆FL2

p+BhXLp,
where we ignore interfacial terms independent of hX . Here ∆F is the bulk free energy
difference per unit area between the two lattices and A, B are constants. This patch is
stable only if it is larger than a critical size L∗

p ∼ −hX/∆F and costs interfacial energy
∼ h2

X/∆F . L∗
p can be large if ∆F is small and can be made even larger by tuning hX .

If L∗
p > L, again, a finite ST crystal will be stable due to the inability of the system to

create a sufficiently low energy SE|ST interface.

It is possible to demonstrate both these mechanisms for the square to triangular tran-
sition. It is known that a mechanically unstable square lattice may decay, at nonzero
temperatures into the stable triangular structure in many different ways [110]. For
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example, (a) alternate rows of particles in the square lattice may shift by half a lattice
spacing hence producing a distorted triangular lattice which subsequently equilibrates.
On the other hand a patch of particles inside the square matrix may undergo a distor-
tion to the triangular structure (b). Our stabilisation strategy should be able to recover
the target square lattice ST from both (a & b) of these distortions.
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Fig. 5.7. The resulting P (χ) at the end of runs Fig. 5.6a (red circles) and Fig. 5.6b (blue
squares), the solid line is the harmonic theory prediction [7].

In Figs. 5.6a and b we demonstrate this explicitly by starting from initial (square)
configurations of a N = 2500 GCM solid incorporating these two kinds of distortions (a)
and (b) and equilibrating with hX = −2.0, where the square lattice is stable. In the first
case (Fig. 5.6a), the local shuffles of particles cost energy and are quickly removed from
the solid. In the second case, (Fig. 5.6b (i)) we first create a large patch of particles
with local triangular order using an inhomogeneous affine strain. Next, we equilibrate
the surrounding matrix keeping the particles within the patch immobile. This produces
a mechanically relaxed (but high energy with large local χ) interface between a square
solid and a triangular inclusion. The constraint is then removed and the whole system
equilibrated. Fig. 5.6b (iii) shows that the sub-critical patch thus created disappears.
As a check (Fig. 5.7) we ensure that P (χ) obtained from the equilibrated configurations
again match theoretical predictions [5, 7].

In 2d, long wavelength displacement fluctuations are known to destroy crystalline
order [1] and therefore a discussion of this effect is germane for the 2d square solid
discussed here. Crystals in 2d posses only “quasi”, rather than true, long ranged order
since the mean squared displacement 〈u2〉 diverges as log L. This is an effect of dimen-
sionality and appears in the thermodynamic limit for any 2d crystal; even those with
non-pathological phonon spectra. These fluctuations have also recently been observed
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even for amorphous solids [116–118] considerably increasing the scope of its general
applicability. How do these fluctuations affect our results?

Our proposal is designed to stabilise finite sized crystals. Indeed, for any |hX |, as the
system size L is increased, one reaches a threshold above which the solid is no longer
stable (see Fig. 5.3b). In order to stabilise larger systems, |hX | has to be increased
as ∼ L2 = N . To obtain stable solids with large L requires large, and probably ex-
perimentally un-realisable, optical field strengths. The weak logarithmic divergence of
displacements discussed above is therefore unobservable at the system sizes obtainable
with any realistic |hX | and does not alter our results.

5.2.5 Experimental realisation of the stabilisation
procedure

We now comment briefly on the foreseeable technical challenges which may need to be
overcome to implement our proposal in the laboratory. Colloidal particles have sizes
in the range 1nm to a few µm, with the larger sized particles being easier to trap and
manipulate [11]. For colloids at the larger end of the size range, typical timescales are
of the order of a second [54]. These particles need to be tracked in real time, forces
calculated and applied using laser traps.

Particle tracking at frame rates of 10 kHz are possible using current technology [119]
so this is not a rate limiting steps. Since the computations needed to calculate forces
even for the most complex lattices are simple these are also quite fast. The crucial
experimental step therefore is the deployment of the traps to generate forces.

For this purpose one may use spatial light modulator and holographic tweezer tech-
nology [109] which produce a reconfigurable optical surface based on inputs. Typical
spatial resolutions of these devices are about 1−3 µm which is appropriate for our pur-
pose. The input frame rate can theoretically go from 500 upto 1 kHz, although actual
frame rates can be much slower. In any case, considering that large colloids are slow,
one has a reasonable margin of exploration.

Are the values of hX for reasonably sized lattices too high to be realised in the lab?
Quantitative estimate of the energy due to the hX term shows that it is comparable
to the energy of interactions which is of the order of a few kBT . This is the regime
where all previous optical manipulations of colloidal crystals have been traditionally
performed [57, 105, 106]. However, spatial light modulators also decrease light in-
tensity which depends on the make of the device; so higher laser powers are needed
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limiting the number of particles which may be trapped without causing excessive heat-
ing. An alternative procedure is to use time shared traps [120] in a dense enough array
fixed in space with their intensities modified intermittently to approximate the optical
potential surface.

Feedback controlled traps of a somewhat different nature has already been employed
to study crystallisation of colloids [121]. The principle behind this implementation
is quite different from ours. Instead of coupling to a local configuration dependent
parameter such as χ, the trap responds to a global order parameter for crystallisation.
The symmetry of the crystal is still determined by the inter-particle interactions and
very limited control over crystal structure is possible.

5.3 Summary and conclusion

In conclusion, we present a proposal for producing crystalline templates for colloidal
particles using dynamic, feedback controlled, laser traps. These templates are recon-
figurable and can, in principle, stabilise any structure in any dimension. Unlike static
templates, our method does not merely provide a restoring force to the target structure.
All possible affine fluctuations about ST are allowed, preserving all symmetries of the
crystal. Only non-affine excursions away from ST are selectively suppressed.

One may view the stabilising forces that we use as originating from an effective three-
body potential viz, Eq. (5.1). The form of this potential depends on the reference
configuration guaranteeing that these forces necessarily stabilise the target structure.
Our method therefore automatically determines the potential which stabilises ST . The
advantage of our method is that no further assumption about particle interactions is
necessary. While it may be possible, for the case of simple target structures, to guess
interactions which give rise to them and perhaps design colloids which produce these
structures [100], this becomes progressively difficult as the complexity of ST increases.
This is especially important when we realise that using a similar strategy even inhomo-
geneous structures such as surfaces and interfaces of any specified orientation as well
as random glassy configurations may be stabilised.

Finally, we emphasise again that fast particle tracking and realisation of fast response
times of light fields required for our method to work is feasible for colloidal solids
because of their slow time scales. Similarly heating problems associated with these
light fields should also be minimal especially since the magnitude of forces needed
are small (1 kBT ). Of course, only actual experiments can finally decide upon the
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feasibility of our proposal. We hope that our work motivates experimental work in this
direction in the near future.

In the next chapter we show that the same principle involved in stabilising colloidal
crystals as discussed in this chapter may be used for stabilising any given pattern in a
swarm of active, autonomous vehicles such as drones and bots.

64 Chapter 5 Stabilising colloidal crystals



Stabilizing order in robotic
swarms

6

6.1 Introduction

In the earlier chapters of this thesis we described how fluctuations of particles arranged
in a particular order or pattern, defined by a set of reference coordinates {Ri}, may
be analyzed in terms of affine and non-affine components and the pattern stabilized by
suppressing the latter. Our interest, so far, were limited to atomic and colloidal crystals
where these particles were at least smaller than microns and were in thermodynamic
equilibrium. Further, these particles were incapable of self-propulsion and responded
mainly to thermal fluctuations and inter-particle interactions. In this chapter, we shall
generalise our study to include a very different class of systems and immersed in non-
equilibrium background environment. First, the particulate entity that needs to be
ordered will typically be of macroscopic dimensions upwards of a few centimeters at
least. Secondly, these entities will have a means of self-propulsion and would be able to
communicate to each other. Finally, thermal fluctuations will be irrelevant in the length
and time scales that we will be typically interested in. In this chapter we apply our
methods as developed in the earlier chapters to stabilize patterns in swarms or flocks of
autonomous, self-propelled, robots which either walk, or swim or fly in some medium.
To be specific, we will study flocks of drones in a turbulent fluid.

Coordinated and collective behaviour of animals is readily seen in nature over a huge
range of length scales from meters and kilometers to microns, in the case of bacterial
swarms [18, 70, 71, 122–124]. Flocks of birds or school of fishes naturally organise
themselves into ordered swarms against the destabilisation tendency of random tur-
bulent noise. However, self propelled particles capable of flocking have been realized
in labs [19, 125, 126]. Such active particles have demonstrated that flocking is not
the result of active decision making but can arise spontaneously due to the presence of
short and long range inter-particle interactions [16, 17, 127].

Many hydrodynamic models linking this spontaneous emergence of order to conser-
vation laws and symmetry breaking have been introduced [127–130]. However, the
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simplest way to model flocking was formulated by Vicsek [16, 17]. The algorithm in-
volves active particles moving with constant speed capable of aligning their velocity
vector with the neighbours within some error. Despite the short range interactions and
rotationally invariant dynamics of Vicsek model, spontaneous long range orientational
order is observed by breaking the rotational symmetry of the system. Unlike equilib-
rium systems, spontaneous emergence of long range order is due to the fact that Vicsek
model is inherently a non-equilibrium system with constant input of energy. While the
spontaneous ordering of active particles have been shown in models like Vicsek, such
large sized ordered flocks are found to be unstable in the presence of turbulent-like
flow field [131, 132]. Furthermore, even though the long range orientational order is
observed, positional order is not maintained.

Such positional order of active particles, however, may be required for many practical
purposes. Patterns of drones or robotic agents or “bots” are useful for many purposes
such as surveying unknown territory, taking measurements of scientifically or econom-
ically important quantities over a large area, pollinating, decontaminating, harvesting,
or simply featuring in purely decorative drone shows [133, 134]. These agents may
be deployed in air, water, land or in space. In many of these uses having the agents
arranged in a specific pattern which may or may not vary in time is useful. Disruption
of the pattern may occur due to many factors for e.g. atmospheric or ocean turbulence.
Typical strategies for maintaining patterns in swarms may involve accurate measure-
ment of the velocity of the fluid medium and compensating for the disruptive forces
at the level of individual bots using computations performed at a central command
and control station. Stabilising any given pattern in such a swarm is therefore energy
expensive and requires extensive computation and communication overheads. These
issues have prevented extensive use of large drone swarms, which tend to be relatively
small, restricted over small spatial extents and operated in calm weather.

In this chapter we show that suppressing non-affine displacements away from the
given reference pattern while allowing affine deformations such as translations, rota-
tions etc. using a virtual non-affine field hX solves many of these problems. Unlike,
colloids, where we proposed dynamic, feed-back controlled laser traps for providing
hX , here it is provided by controlling the thrust vectors of the robots. The instanta-
neous local neighborhood of a drone within a swarm is used to compute these thrust
vectors by comparing it with a desired reference residing in the memory of each drone.
We show that the energy, or power, expended in the steady state fluctuates around zero.
Finally, we show that under certain conditions, spatial correlations of the magnitude of
the thrust mimics velocity correlations of the, possibly turbulent, fluid medium. In such
cases, velocity structure factors of the turbulent fluid can be measured [135] without
measuring the velocity! There are no restrictions of the length scales in such measure-
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Fig. 6.1. Schematic of a swarm of bots (blue dots) the solid black lines joining the bots are a
guide to the eye.

ments, making these ideal systems to deploy for studying atmospheric turbulence over
kilometers.

The rest of this chapter is arranged as follows. In the next section 6.2, we discuss sim-
plified models for swarms and the flow field. This is followed by section 6.3, where we
begin our investigation for each model. We present our results for several quantities. In
section 6.4, we summarize our results and critically comparing them for different mod-
els. Finally, we end the discussion by briefly commenting on the real word implications
and feasibility of our stabilization algorithm.

6.2 A robotic swarm in a turbulent flow

Unlike atomic and colloidal solids where thermodynamics determines an equilibrium
structure, there is no such restriction for robotic swarms, which can exists in any or-
der or pattern desired by us. Indeed, swarms of airborne drones are routinely used for
decorative drone-shows [133, 134]. To avoid unnecessary computational complexity
however we assume, in what follows, a very simple structure for our swarm. We em-
phasize, however, that the principles described in this chapter apply to swarms of any
shape and size without restriction.

Consider, therefore a system of bots placed at equal intervals on a ring of radius Rs

(see Fig. 6.1). The particles are considered to be point like, have mass m and are
allowed to move within a 2d square simulation box of length L >> Rs. Note that we
show computations for a fully two dimensional swarm - a ring immersed in a 2d flow.
Our method works equally well in any dimension as should be obvious from the work
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presented in the earlier chapters of this thesis. Extension to 3d is therefore feasible but
at the cost of computational complexity.

At any time step t, due to the presence of a background flow field, the position ri and
velocity vi of ith particle is determined by the set of Stokes-drag or Langevin dynamics
(LD) equations with a constant drag coefficient γ.

dri

dt
= vi , (6.1)

m
dvi

dt
= −γ (vi − U(ri, t)) + Fi , (6.2)

where U(ri, t) is the background spatio-temporal flow field measured at the particles’
position ri and time t. Note that, we do not take into account any reverse affect of
the particles on the flow field. In other words, the system is under the constraints of
dry hydrodynamics and lacks Galilean invariance. The particles, i.e. bots or drones,
are active and capable of self propulsion. In the above outlined equation, Fi represents
such active forces or thrusts produced by the bots’ own propulsion system. A careful
choice of active forces can stabilize the pattern against the turbulent flow. To show this
we examine three different models of active forces discussed in Sec 6.2.2. Before we
do that we need to specify the flow field used in our study. We do this below.

6.2.1 Modelling the flow field

In practice, our robotic agent will experience real turbulent flow obeying the Navier-
Stoke’s equations. However, for our proof of principle, an accurate solution to these
equations is unnecessary. We use, therefore, a synthetic, multi-scale, spatio-temporally
correlated turbulent-like flow field.

To model the velocity field we follow the method described in [136–138] i.e. the
velocity of the field U(r, t) at any given position and time is obtained from the Fourier
series,

U(r, t) = V0

Nk∑

n=1

[
An cos(kn · r + ωnt) + Bn sin(kn · r + ωnt)

]
. (6.3)

Here Nk is the total number of Fourier modes included and V0 is a dimensionless con-
stant which determines the strength of the field. Although, U(r, t) in the above equation
is not a solution of Naiver-Stokes equation, the Fourier coefficients An, Bn and distribu-
tion of modes kn, ωn are chosen such that the velocity field produced is in-compressible
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and the energy spectrum follows Kolmogorov scaling k−5/3. Therefore, for a 2d flow
field, we take

An = an(cos(φn), − sin(φn))

Bn = bn(− cos(φn), sin(φn))

kn = kn(sin(φn), cos(φn)), (6.4)

with phases φn chosen randomly from a uniform distribution between [0, 2π). The
choice of phases remains constant for all time but is different for different ensemble/re-
alization of the field. Evidently, with the above choice of Fourier coefficients, we have
An · kn = Bn · kn = 0 resulting an in-compressible field for any choice of φn,

∇r · U(r, t) = 0 .

The magnitudes an and bn in Eq. (6.4) are

|an|2 = |bn|2 = E(kn)∆kn. (6.5)

such that E(k) is the energy spectra of the form Ck−5/3 in the range (k1 = 2π
ζ ) ≤ k ≤

(kNk
= 2π

η ) and zero otherwise. Where, ζ and η corresponds to largest and smallest
length scale respectively. For a discrete set of kn, ∆kn are defined as,

∆kn =






(kn+1 − kn−1)/2 , 2 ≤ n ≤ Nk − 1

(k2 − k1)/2 , n = 1

(kNk
− kNk−1)/2 , n = Nk

(6.6)

with the wave-vector amplitudes kn obeying any one of the following distributions.

kn =






k1nα algebraic,

k1αn−1 geometric,

nk1 linear.

(6.7)
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and n = 1, 2, 3...Nk. Value of α for the above distributions is obtained by setting k1 and
kNk

equal to 2π/ζ and 2π/η, thus

α = ln (ζ/η)
ln (Nk) for algebriac,

α = (ζ/η)1/Nk−1 for geometric.

Additionally, the frequencies ωn determines the unsteadiness of the field and is propor-
tional to the eddy turn over time, ωn = λ

√
k3

nE(kn), with λ as a dimensionless constant
of order 1.

In our analysis, we choose linear distribution of wave-modes with C = 0.5. However,
any other choice of mode distribution do not affect our results. We also set ζ equal to the
length of the simulation box L with a total of Nk = 500 modes. For each realisation of
the flow field (choice of φ), λ is reset at every twentieth time step of our LD simulation
to a value chosen from Gaussian distribution of mean 1 and standard deviation 0.25.

6.2.2 Modelling active forces

Study of a spring-mass like system immersed in a turbulent flow field has given us
much insights [139–143]. Such studies have shown, a spring-mass chain system can
preferentially sample the vortex flow. Different motions of the spring-mass chain, such
as different regimes of “flapping” motions can yield valuable information about the
flow field itself such as the scaling of the velocity structure function, energy flux of the
turbulent fluid, characteristic times of eddies etc [144–146]. Therefore, it is natural to
ask about the stability of the system of particles, if the active forces are of harmonic
in nature. Is a swarm, where virtual harmonic interactions are assumed within drones
capable, in general, of maintaining it shape? To investigate, we consider our model
swarm in the shape of a ring of particles with forces given by,

Fα
i = −K

∑

j

(|rij| − |Rij|)
rα

ij

|rij|
, (6.8)

where sum over j is extended over the neighbours of i and α represents the spatial
coordinate.

Although, harmonic forces used above are translationally invariant and depends only
on the positions of neighbours, we note that such system when immersed in turbulent
flow do not maintain its pattern regardless the value of stiffness k. Time evolution
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Fig. 6.2. Typical time evolution (t1 < t2 < t3) of the ring in the presence of turbulent field
and active harmonic forces. Configurations obtained are for turbulent field strength
V0 = 1.1 and force stiffness K = 500. Background color represents the vorticity values
of the turbulent field. Time t1 show the initial configuration of the system. Clearly, the
ring pattern of active particles is not stable if harmonic interactions are considered.
Black solid lines are for visual guidance.

in Fig 6.2 shows deformation of the ring into an entangled state. Further, large time
simulation shows no recovery from this intertwined state of the ring.

Particle displacements observed in the case of harmonic active forces show the ex-
istence of zero energy collapse modes [83]. Though, the connectivity between the
neighbours is preserved due to the harmonic bonds, the swarm can deform without
any energy cost. Such deformations can be avoided by making use of more compli-
cated interactions between particles. One approach is to include more connections
between neighbors until the Maxwells criterion for rigidity is met [76]. This requires
information of distant neighbours and cause communication overheads. Clearly, sim-
ple two-body interactions are not enough and the one requires three-body forces or
forces that prefer particular bond angles as used in, say, Chapter 3 (honeycomb case
Sec 3.1.3). Even in the presence of such interactions, the desired pattern may not be
the unique ground state [147]. In addition, formulating such harmonic interactions
can be cumbersome for more complex patterns.

Throughout this chapter, we explain how to achieve this and stabilize a given pattern
in a swarm with the desired target configuration being the unique ground state of the
system. Our algorithm is similar to that used for colloids in Chapter 5, although we do
not need external traps to generate the necessary forces. As discussed in Chapter 2, any
set of particle displacements can be projected onto affine and non-affine subspace. The
non-affine part of the displacements, in contrast to affine, involves particle rearrange-
ments and change the local connectivity of the neighborhood (Chapter 2). We have also
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shown in Chapter 5 that a system of colloidal particles in thermal equilibrium can be
stabilized into any desired lattice symmetry if it is only possible to suppress non-affine
displacements [35]. The stabilization procedure proposed does not require the specifics
of inter-particle interaction or noise but the information of the desired reference struc-
ture. Since, minimising non-affine displacements away from a reference configuration
is essentially a linear optimization problem, therefore, the desired reference structure
being the unique ground state is guaranteed.

Fig. 6.3. Reference structure and coarse-graining volume Ω. a. Model A : Floppy Swarm,
Active particle spaced equally on a ring. Around particle i coarse-graining volume
(pink shaded) is defined and consists two left and right neighbours. b. Model B :
Rigid Swarm, Active particles equally spaced on a ring (dark blue) surrounded by
layer of concentric ghost particles (light blue). Coarse-graining volume (pink shaded)
around particle i consists of total 8 particles.

We borrow this idea of selectively suppressing non-affine displacements while simul-
taneously allowing affine transformations for our active forces. While detailed discus-
sions of the projection formalism are given in the previous chapters of this thesis, we
briefly recall below the main ideas relevant to the context of the present study.

For any desired pattern, which we wish to stabilise such as ring, the reference config-
uration of each tagged particle Ri remains in the memory of robotic agents. We study
two different models namely “Model A : Floppy swarm” and “Model B : Rigid swarm”,
see Fig 6.3. For both the models, around each particle i, a coarse-grained region Ω(i)
consisting the ids of neighbours of ith particle is defined. As discussed in Chapter 2,
in d dimension for a given coarse-graining volume consisting NΩ number of particles
there exist NΩd − d2 non-affine modes. Therefore for our 2d system, Ω should always
consist of more than two neighbour particles in order to have non-affine displacements.
In other words, any motion of two particles in 2d is always affine.
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In Model A we use a coarse-graining volume Ω consisting of five particles viz. two
left and right neighbours of the central particle. On the other hand, in model-B active
particle are sandwiched between concentric layers of “ghost” particles. The ghost par-
ticles are imaginary particles with only the spatial coordinates stored in the memory of
the actual drones. The purpose of the ghost particles is to provide a reference structure
for the non-affine projection formalism. Further, ghost particles do not interact with
background flow field and are free to translate and rotate along with the center of mass
of the actual flocks. Coarse-graining volume for model-B thus consist of total 8 + 1
particles as shown in Fig 6.3.

For a pure affine deformation of Ω, a deformation matrix D can be written such
that uj − ui = Di(Rj − Ri). On the other hand, a generic set of particle displacements
contains contribution from both affine and non-affine. In such cases a local deformation
tensor D is defined as the one which minimises

χi = min
D

∑

j∈Ω(i)
[uj − ui − Di(Rj − Ri)]2 , (6.9)

the sum over index j extends to all particles contained in coarse-graining volume Ω
around particle i. Upon following the procedure described in Chapter 2 and 5, the
active forces for the swarm can be defined as follows.

Fi = −∂(−hXNX)
∂ri

(6.10)

In the above equation, N is the total number of active flocks and hX determines the
strength of non-affine active forces conjugate to global non-affinity parameter

X = 1
N

∑

i

χi (6.11)

Using Eq. (6.10), force in direction α on particle i can be written explicitly as

Fα
i = −2hX

∑

j∈Ω(i)

[
2uα

ij −
(
Dα1

i + Dα1
j

)
R1

ij −
(
Dα2

i + Dα2
j

)
R2

ij

]
. (6.12)

Here Di is the best fit deformation matrix whose elements are given by,

Dµν
i =

∑

j∈Ω(i)
uµ

ij

(
R1

ij(Yj
−1)ν1 + R2

ij(Yj
−1)ν2

)

(Yj)µν =
∑

i∈Ω(i)
Rν

ijR
µ
ij (6.13)
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Note that the above expression for the force, as usual, preserves translational invari-
ance. Although the force expression outlined in above is true for both Model-A and B,
the numerical value is different due to the sum over different coarse-grained regions
and reference structures. Unlike the colloid case studied in Chapter 5, there are no
other “inter-particle” forces. Of course, when two bots come very close to each other,
they may collide. This eventuality has not been considered by us here but collision
avoidance may easily be incorporated if needed.

6.3 Results

Once our model for active non-affine forces is setup, we are in position to start our
investigation. The equations of motion Eq. (6.2) in Sec. 6.2 in the presence of flow
field are integrated numerically using a Verlet type algorithm as prescribed in [148].

ri(tn+1) = ri(tn) + gdtvi(tn) + gdt2

2m
fi(tn) (6.14)

vi(tn+1) = hvi(tn) + dt

2m
(hfi(tn) + fi(tn+1))

where,

g ≡ 1
1 + γdt

2m

; h ≡
1 − γdt

2m

1 + γdt
2m

Thus the particles’ position {r(tn+1)} and velocities {v(tn+1)} at time tn+1 are computed
from those at the earlier time (tn = tn+1−dt). Besides that, at each time particle position
and velocities are also influenced by non-affine forces (Eq. (6.12)) and the background
turbulent field. Therefore in Eq. (6.14), fi(tn) is the total force and is given by the sum
γU(ri(tn), tn) + Fi({r(tn)}).

For our simulation, without loss of generality, we choose m = γ = 1 with the integra-
tion time step as dt = 0.001 units. We check the robustness of our stabilisation algorithm
using the collective scalar variable X (Eq. (6.11)) averaged over different realisation
of the flow field. Variation of X for different values of the strength of non-affine forces
hX and turbulent field V0 has been studied. Lower the values of X corresponds to more
stable patterned structure.
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Fig. 6.4. Model A: Time evolution (t1 < t2 < t3) of model-A for different strength of non-affine
force hX = −200, −1000 and V0 = 1.1. Background color represents the vorticity
values of the turbulent field. Clearly, transformations of the circular ring to ellipti-
cal shapes are allowed and cost no energy because these shapes are related to the
reference circle by an affine transformation. Solid black lines are for visual guidance.

6.3.1 Model A: Floppy swarm

We collect and analyse the simulation data when X reaches a steady state for all reali-
sations of flow field. Our results for the Model A ring reveals a stable elliptical pattern
for sufficiently high values of hX . On the other hand, at low strength of non-affine
forces hX , the ellipse may intertwine with itself occasionally. It is interesting to note
that, in this case, since such an intertwined ellipse is essentially a non-affine deforma-
tion it relaxes back as time progresses in sharp contrast to the purely harmonic ring.
Furthermore, highly elliptical configurations are often observed. The transformation
that takes a circle to an ellipse is affine such as a shear or uni-axial strain. Such de-
formations, no matter how large, do not produce any non-affinity in the system and
hence are not resisted by the active forces. However, in each case, we note that the
local neighbourhood connectivity between particles is preserved.

At steady state, one can now also look at the variation of global non-affinity X with
respect to strength of flow field V0 and non-affine forces hX (see Fig. 6.5). It is quite
evident that, non-affine forces are working against the destabilising effects of turbulent
flow field. Due to these two competing forces, we show (Fig. 6.5 ) that X ∼ V 2

0
|hX | i.e.

the ratio of the strength of the noise to strength of stiffness forces, which is the only
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Fig. 6.5. Model A : a. Variation of < X > with respect to strength of non-affine forces hX . A
decrease in value of < X > shows the stability of the patterned as strength of non-
affine field is increased. b. Variation of < X > with respect to strength of non-affine
forces V0. Increase in value of < X > with increase in strength of velocity V0 indicates
the destabilising effect of turbulent flow. c. Scaling form, < X > varies linearly with
V 2

0 /|hX |.

independent dimensionless number possible. For small values of this dimensionless
number, the relation is linear.

6.3.2 Model B: Rigid swarm

Although, non-affine forces were able to preserve the local neighbourhood, a perfect
ring shaped swarm of robotic agents is not possible and may transform into an ellipse.
However, such affine deformations can be avoided if one considers a reference structure
that involves ghost layers of particles viz. Model-B. The position of the particles in the
ghost layers are not affected by the turbulent field or non-affine forces and remain
virtual, stored only the memory of robotic agents. However, the ghost layers are free
to translate and rotate with the real active particles. Presence of ghost particles thus
serves as a stencil for actual ring and deformations like shear and uni-axial strain are
now deemed as non-affine. Only affine transformations which involves pure rotation
and translation of the full system as a whole are allowed. For such a system we realise
that the affine mode which may take a ring to ellipse can be suppressed as well. Fig. 6.6
shows a typical configuration of a Model-B swarm for different values of V0 and hX

indicating the stabilisation effect of non-affine forces at a much lower value of non-
affine forces. It is interesting to note, the global non-affinity X, for the system with
ghost particles also follow the same scaling form of 〈X〉 ∼ V 2

0 /hX (see Fig. 6.7).
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Fig. 6.6. Model B: Time evolution (t1 < t2 < t3) of model-A for different strength of non-affine
force hX = −0.4, −1.6 and V0 = 1.1. Background color represents the vorticity values
of the turbulent field. Clearly, due to presence of ghost particles active particles in a
definite ring pattern is stabilized.

Fig. 6.7. Model B: a. Variation of < X > with respect to strength of non-affine forces hX . A
decrease in value of < X > shows the stability of the patterned as strength of non-
affine field is increased. b. Variation of < X > with respect to strength of non-affine
forces V0. Increase in value of < X > with increase in strength of velocity V0 indicates
the destabilising effect of turbulent flow. c. Scaling form, < X > varies linearly with
V 2

0 /|hX |.
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6.4 Summary and conclusion

In this work we have studied the effect of active forces on the stabilisation of a swarm
of robotic agents immersed in turbulent flow field. We observed that introducing a
simple, harmonic-like interaction among the bots is not sufficient to maintain the struc-
ture/pattern of the swarm. However, suppressing non-affine fluctuation of the robotic
agents from the desired reference structure can achieve this feat. As active non-affine
forces depends only on the instantaneous and reference position, any desired structure
of swarm can be stabilised without worrying about the structure of background flow
field. Another important finding of our work, worth mentioning, is the energy effi-
ciency of the stabilisation algorithm. Upon ensemble averaging, the global non-affinity
X reaches a constant value. Thus the average power spent by non-affine forces to
stabilise the pattern is zero for both Models A and B. Of course, drones need a finite
amount of power to operate. However, drones are also required to produce an addi-
tional thrust against the turbulent field to stabilize the desired pattern. It is this part of
the total power, which upon ensemble averaging fluctuates around zero.

〈dX

dt
〉 = 〈

∑

i

∂X

∂ri
· ri

dt
〉 = 〈

∑

i

Fi · vi〉 = 〈
∑

i

pi〉 = 0. (6.15)

In Fig. 6.8a we have plotted a time series of the total power expended by the active

Fig. 6.8. Model-A: a. Time series of total power spent by the active forces. b. Time series of
average value of X in the steady state. Both a. and b. are obtained for the value of
N = 32, hX = −1000 and V0 = 0.3 averaged over 30 different realisations of the flow
field.
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Fig. 6.9. Model-B : a. Time series of total power spent by the active forces. b. Time series of
average value of X in the steady state. Both a. and b. are obtained for the values of
N = 128, hX = −2.0 and V0 = 1.0 averaged over 20 different realisations of the flow
field

forces in a Model A swarm. It is clear that this quantity, in the steady state, fluctuates
around zero when the average non-affine parameter X attains a steady state (panel
b of the same figure). In Fig. 6.9a and b, the corresponding quantities are plotted
for Model B. A comparison shows that, while the graphs are qualitatively similar, both
the non-affine parameter and the mean of the squared power to maintain the shape is
much smaller in Model A than in B. This is obvious because the former produces a much
more “floppy” swarm with large (affine) changes of shape that does not cost energy. On
the other hand, in Model B, the nature of the reference configuration with the ghost
layers ensure that all changes of shape are non-affine and needs to be resisted by active
forces. This makes the structure of the swarm stiffer and takes larger active forces to
maintain even though the average power still vanishes. The distribution of the power
expended for the two models is shown in Fig. 6.10. We end this chapter by discussing
an interesting application of our drone swarms. It is well known that the structure of
a turbulent flow field can be efficiently interrogated using tracer particles [149, 150].
Recently, there has been progress in understanding the dynamics of extended objects
such as polymers[135, 146]. As mentioned before, these studies showed that a lot of
information about the turbulent velocity field can be obtained by studying the dynamics
of polymers embedded in this field [135].

One of the obvious problems in such studies is the limited spatial scale from which
information may be obtained. This is restricted by the size of the polymer and is not
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Fig. 6.10. Distribution of time series of averaged power around zero for a. Model-A and b.
Model-B obtained for the parameters as in Fig 6.8, 6.9. The peak of the distribution
indicates the energy-efficiency of the stabilization algorithm.

very useful if we need to interrogate a turbulent field of the size of a few meters to kilo-
meters, for example a tropical hurricane or cyclone. This is where robotic swarms may
become useful. One may be able to measure the local velocity field using appropriate
sensors and compute correlation functions and structure factors “on the fly”.

While this is of course possible, our non-affine field stabilized drone swarms can go a
step further. To see this, we first point out that interestingly, no knowledge of the veloc-
ity field is necessary to derive the active forces. They depend only on χ and therefore
only on the knowledge of the instantaneous and reference positions. Obtaining infor-
mation about positions is technically far easier than measuring local flow velocities.
Further, in Model B in the steady state, non-affine forces exactly balances the destabil-
ising flow field, since all fluctuations of the shape are non-affine due to the presence
of the ghost layers. Therefore an imprint of the statistics of the flow is present in the
statistics of the non-affine forces used to stabilise the swarm in the first place. The
statistics of background flow field can be obtained as a bonus from that of non-affine
forces.

We show this by calculating the longitudinal structure factor [151] for particle veloc-
ity S||

v (rij) = 〈((vi−vj)·r̂ij)2〉 and non-affine forces S||
F(rij) = 〈((Fi−Fj)·r̂ij)2〉 averaged

over different ensembles. Fig. 6.11a and b shows the velocity and force structure factor
together with the expected Eulerian form obtained from the flow field in Model A(a.)
and Model B(b.). In both the models, the velocity structure function follows the Eule-
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Fig. 6.11. Plot of longitudinal structure factor S||(r) as a function of distance r measured at
Eulerian points (solid line), using velocities of individual particles(blue diamond),
and using non-affine forces (yellow dots). The simulation was done for the ring size
of radius Rs = 2, box size L = 40 and for N = 128 particles. In above the parameters
were set to, a. for Model A, V0 = 0.1, hX = −1000 and b. for Model B V0 = 1.0,
hX = −2. For dots and diamonds, simultaneous binning was done on distances and
the value of structure factor. It is observed that for model B, the statistics for the
underlying turbulent field can be obtained solely through the non-affine forces.

rian curve. The structure factor of the non-affine forces, however, is almost a constant
for Model A but reproduces S||

v (rij) for Model B.

To understand this we present below a small exercise to show the relation between
the velocity and the non-affine force structure functions for both the models. Consider
a small deformation of the ring away from the reference configuration {R} in time
τ(= m/γ). The global non-affinity X thus produced can be expressed as a Taylor
expansion in terms of the displacements {u},

X({u}, {R}) = X({R}) +
∑

i,α

∂X

∂uα
i

∣∣∣∣∣
{R}

uα
i +

∑

i,k,α,γ

∂2X

∂uα
i ∂uγ

k

∣∣∣∣∣
{R}

uα
i uγ

k. (6.16)

The first two terms vanish when evaluated at the reference configuration. Non-affine
force Fi on particle i is then obtained by taking another derivative of the above equa-
tion,

Fα
i = hXN

∑

k,γ

∂2X

∂uα
i ∂uγ

k

∣∣∣∣∣
{R}

uγ
k = hX

∑

k,γ

φαγ
ik uγ

k. (6.17)

Here, the constants φαγ
ik are related to the projection matrix P. By construction and

from the definition of X, it is easy to show that φαγ
ik = ci−kδαγ with k being restricted

to the neighbours and next nearest neighbours of i. Therefore, with the definition
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Ω2(i) ≡ Ω(i) ∪ Ω(Ω(i)) and pulling out the displacement of the ith particle from the
sum, the non-affine force takes the following form,

Fi = hX [−c1ui +
∑

k∈Ω2(i),k (=i

ckuk], (6.18)

and c1 = ∑
k∈Ω2(i),k (=i ck. Note that, this expression can also be obtained from the usual

expression of X and its derivative, see Eq. (6.12). However, it is useful to show the
linearity in u when derived in this way. Since all sites on the ring are equivalent, the
force on any other particle j is,

Fj = hX [−c1uj +
∑

k∈Ω2(j),k (=j

ckuk]. (6.19)

Subtracting Eq. (6.19) from Eq. (6.18) while correcting for trivial rotation and transla-
tion yields,

Fi − Fj = −hX [c1(ui − uj) −
k=n∑

k=0
ck(ui+1+k − uj+1+k + ui−1−k − uj−1−k)]. (6.20)

Although, the above equation is true for both the models, constants c needs to be
calculated appropriately with n = 3 for Model-A and n = 1 for Model-B. Taking a dot
product of Eq. (6.20) with r̂ij,

(Fi − Fj) · r̂ij = −hX [c1(ui − uj) · r̂ij

︸ ︷︷ ︸
I

−
∑

k

ck(ui+1+k − uj+1+k + ui−1−k − uj−1−k) · r̂ij

︸ ︷︷ ︸
II

].

(6.21)
The second term II in the above expression tends to produce affine deformations. Since
in Model B affine transformations other than global translation and rotation are re-
stricted, term II is small and bounded at all instants. On the other hand, this term
tends to diverge in Model A (see Fig. 6.12). For small values of V 2

0 /hX and considering
bots to be tracer particles, displacements are proportional to U(ri, t)τ . Substituting for
displacements and approximating the Eq. (6.21) with the first term on right hand side
we obtain,

(Fi − Fj) · r̂ij . c1τ(U(Ri, t) − U(Rj, t)) · r̂ij. (6.22)

Finally, upon squaring and taking ensemble average of the above equations yields the
desired structure function for non-affine force and the background velocity field,

〈(Fi − Fj) · r̂ij)2〉 . 〈(c1τ(U(Ri, t) − U(Rj, t)) · r̂ij)2〉 ∼ |rij|2/3. (6.23)
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Fig. 6.12. Plot of term II of Eq. (6.21) as a function of time for both Model A (red) and B (blue).
The term II is averaged over 50 different realization of the flow field evaluated for
the set (hX , V0) = (−1000, 0.1) and (−2, 0.1) for Model A and B respectively. For
better statistics sum over all equivalent pair of i − j are considered.

Note that this approximation fails for Model A because term II cannot be neglected in
this case.

For completeness, we also compute the two-point spatial non-affine correlation Cχ.
Defining,

Cχ(i, j) ≡ 〈χiχj〉 − 〈χi〉〈χj〉√
〈(χi − 〈χi〉)2〉

√
〈(χj − 〈χj〉)2〉

. (6.24)

These correlation are symmetric over the ring and is plotted as a function of particle id’s
i in Fig. 6.13. We observe that these correlations are long-range for both models. How-
ever, in Model A, it decays comparatively faster. Since non-affine force are nothing but
the derivatives of χ, this further supports the fact that non-affine forces are correlated
as well.

This surprising result elucidate a very important aspect of the Model B swarm. Since,
non-affine forces need to be computed anyway in order to stabilise the structure, no
extra measurements are required for obtaining the structure factor of the background
flow field. This novel outcome of our study has important application in the field of
turbulence. The set of robotic agents such as drones can be setup as a Model B swarm
to probe the statistics of the atmospheric turbulence at the length scale of miles. It
is also easy to make a swarm switch between Model A and Model B modes because
the difference is only in the reference configurations. The swarm can, therefore, fly
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Fig. 6.13. Non-affine correlation between particle i = 0 and j for Model A and B. The corre-
lations are obtained for values same set of parameters as in Fig. 6.12 averaged over
50 different realisations of the flow field. For better statistics, further averaging over
equivalent pair with fixed i − j is done.

in the floppy mode to conserve energy but switch to a stiffer configuration when a
measurement of the background velocity field is needed.

Finally, we comment on the real world feasibility and technological aspect of our sta-
bilisation algorithm. Of-course the active robotic agents are required to produce enough
thrust to propel against turbulent flow, the proposed algorithm can stabilise the flock in
a desired pattern. The formulation developed here can be used to stabilize flock of UAV
(Unmanned Aerial Vehicle, e.g. drone, quadcopter, multirotor) or a cluster of satellites
(e.g. SpaceX’s Starlink) [152, 153] or cluster of high-altitude balloons (e.g. Project
Loon) [154, 155] to preserve a reference pattern in fluctuating environments. For an
UAV, this is typically accomplished by getting the precise position of each of the objects
(either by performing a Sensor fusion using Inertial Measurement Sensors and/or GPS
or by using ground-based radio subsystem [156]) in space and then compensating any
deviation from the reference template using the classic Proportional Integral Differen-
tial (PID) control system or its variants (e.g. adaptive PID loop). But in the presence
of a highly fluctuating and turbulent environment, say in the presence of a mild storm,
maintaining the flock to its reference position becomes difficult using PID control loop
alone. Also, this requires careful tuning of the three PIC coefficients (namely, Kp, Ki &
Kd). The non-affine field may serve as a better alternative control loop than the tradi-
tional PID control having only one control parameter, namely the strength of the field
hX . The reference template can be updated even in flight to form a different pattern.
A low-bandwidth but low-latency short-ranged ) RF communication system is required
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to be present in each of the objects so that they can communicate their local posi-
tions to other objects present within the coarse-graining volume to calculate their local
non-affine parameters. This should be achievable by either Bluetooth mesh networking
implemented using Bluetooth Low Energy 4.0 (BLE) devices or ZigBee Wireless Mesh
Networking (WMN) devices or possibly using other emergent technologies. The cluster
of entities should be able to communicate with a central ground station by a long-
range but low to moderate latency communication hardware. In order to efficiently
compute their own non-affine parameter and the corrective non-affine force required
to compute the target position, the entities should use a fast microcontroller, preferably
having hardware single or double precision Floating Point Units (FPU).
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Thesis conclusion and future
direction

7

We generalise, and then use the non-affine projection formalism to study several two
and three dimensional lattices. We have focused on both closed packed and open crys-
tals as well as multi atom basis in thermal fluctuations. Atomic displacements once
coarse-grinned over some specified volume can then be decomposed into two mutually
orthogonal subspaces. Whereas eigenvectors of PCP obtained after such formalism are
shown to be related with defect precursor in the crystals, sum of eigenvalues measures
the total non-affine contribution. For any dimension d these modes are d−fold degen-
erate. While for lattices with one particle basis like triangular, square, sc, bcc, fcc, there
exist a significant gap between the largest eigenvalue and the rest. In huge lattices,
the eigenvector associated with the largest eigenvalue may be related to well known
lattice defects such as dislocations and stacking faults. Open lattices like honeycomb
and Kagome lacks this gap. Nevertheless for open lattices where the gap is absent,
we observed soft non-affine modes continues to be related to the well known floppy
modes. For fcc systems, mechanism of stacking or slip can also be understood in this
framework.

Suppressing the non-affine modes related to defect precursors are shown to stabilise
any desired lattice structure for any given interaction. The lattice thus produced is
translationally invariant and the structure of the lattice can be changed at will. The
qualitative features of the stabilisation mechanism is independent of the nature and
interaction between particles. A feedback controlled optical traps is proposed for the
experimental realisation of the non-affine field and may be used to verify our results.

Finally, we extended the stabilisation mechanism to non-thermal fluctuations such as
noise in a turbulent fluid and show the general applicability of our stabilisation algo-
rithm for any order/pattern. Active robotic drones aware of their neighbours can adjust
their positions to minimise non-affine deformations caused by turbulent field thus sta-
bilising the global pattern. We show that just by fixing the pattern one automatically
obtains the statistics of the background flow field. This way of stabilising may prove
useful for the experiments on real world turbulence, where measuring velocities is dif-
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ficult in real time. On the other hand, continuous snapshot of the swarm of drones may
reveal the information and statistics of the turbulence.

This decomposition of displacements into affine and non-affine have lead to a deeper
understanding in several disparate contexts. For example, it has been possible to eluci-
date many aspects concerning the failure of rigid solids under load. Loading a rigid solid
is tantamount to quenching it across an equilibrium first order phase transition [37].
Yielding of a crystal under load is simply the decay of this metastable phase to the sta-
ble phase, which eliminates stress by non-affine atomic rearrangements. This radically
different viewpoint nevertheless allows one to calculate, for the first time, strain rate
dependent yielding thresholds using classical nucleation theory.

In networked solids, where atoms are bound by strong chemical bonds, dislocations
do not form. Nevertheless such solids may deform by special singular formations called
pleats or “ripplocations", which have been described within the same language of non-
affine displacements [30, 33].

Finally, in a protein - a large molecule consisting of interacting atoms with no spatial
long ranged order - it has been shown that important conformational changes, which
precede binding to ligands are always non-affine. These may be discovered by simply
projecting out the local atomic displacements using the same projection formalism.
Regions with large susceptibility for non-affine displacements correlate with binding
hotspots and spatial correlations of the magnitude of non-affine ness mark sites of
allosteric control [38].

Future direction

The findings presented in this thesis are mainly limited to harmonic lattices, but sys-
tems where harmonic approximation breaks down, a more comprehensive calculation
is needed. Effects of such anhamonicities on the precursors to lattice defects may be
included either perturbatively or using self consistent field theories [157, 158]. In
amorphous solids, defects responsible for plastic flow co-localizes with extended vibra-
tional modes and can be isolated with some effort [26]. Such localized defects resem-
bles with the defect precursors discussed in the thesis. We believe, an extension of the
present work to amorphous solids may show some light on the deformation mechanism
of amorphous solids. In addition, an elasticity theory which involves both affine and
non-affine displacements can be developed. This will go beyond the classic theory of
elasticity where imposed compatibility conditions rule out the possibilities of disloca-
tion like defects. A coarse-grained theory of non-affine displacements will also, finally,
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remove the constraint of having a tagged reference and will be able to describe point
defects and particle exchanges (see Sec 2.4).

Landau theories in terms of an elastic order parameter are used to explain struc-
tural phase transformations (Martensitic) [159–162]. With imposed compatibility con-
straints, such strain only theories restrict the displacement field and prevents formation
of defects or atomic rearrangements. Such theories therefore, by construction can only
describe structural transitions where atomic rearrangements do not occur. Experiments
on colloidal Martensites show that such rearrangements leading to non-affine displace-
ments readily occur during nucleation of one crystal inside another [6, 56]. Although
some efforts have been made to include non-elastic displacements [163–166], a Landau
theory which involves all non-affine modes can be explored further.

Furthermore, as shown in Chapter 5, non-affine fields with a tuning parameter can be
modeled to stabilize lattices of different symmetries. However, a system where different
kinds of order compete with one another may result in a kinetically arrested state with
glass like properties [167–169]. Investigation along these lines can be an interesting
future goal.

Finally, we showed that the statistics of turbulent field can be obtained using a feed-
back controlled non-affine forces. We suspect this result stems through fluctuation
dissipation theorem and is not limited to turbulent fields. Thus, a systematic study to
establish this result for any general fluctuating environment must be done. Additionally
the formulation developed here can be used in control theories to stabilize any set of
parameters (such as an abstract set of quantities in an electronic circuit) close to the
desired values. This is advantageous over the existing control theories where at least
three control parameters are required [170], whereas our formalism has only one con-
trol parameter viz. hX . Future work concerning this aspect of the non-affinity might be
a good quest.
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Appendix A
A

A.1 Dynamical matrix for harmonic interactions

We give below the expressions for the dynamical matrices for all the lattices studied in
this paper. We have kept a, the lattice parameter, and the spring constants k1 and k2

explicitly for clarity. For each case we have included nearest neighbor and next nearest
neighbor bonds, with spring constants k1 and k2, respectively. For the triangular lattice
only nearest neighbor bonds were retained (k2 = 0). Separate expressions are given
for the additional terms that result in the triangular and honeycomb lattices from the
introduction of additional bond-bending terms.

A.1.1 Square

A11 = 2(k1 + k2 − cos(aqx)(k1 + k2 cos(aqy)))

A12 = 2k2 sin(aqx) sin(aqy) = A21

A22 = 2(k1 + k2 − cos(aqy)(k1 + k2 cos(aqx)))

D(q) =


 A11 A12

A21 A22



 (A.1)

A.1.2 Triangular

91



B11 = k1

(

3 − 2 cos(aqx) − cos
(

aqx

2

)
cos

(√
3aqy

2

))

B12 = k1

(√
3 sin

(
aqx

2

)
sin

(√
3aqy

2

))

= B21

B22 = k1

(

3 − 3 cos
(

aqx

2

)
cos

(√
3aqy

2

))

D(q) =


 B11 B12

B21 B22



 (A.2)

A.1.3 Triangular with bond bending:

B′
11 = 3kb

[

3 − cos(aqx) − 2 cos
(

aqx

2

)
cos

(√
3aqy

2

)]

= B′
22

B′
12 = 0 = B′

21

D(q) =


 B′
11 B′

12

B′
21 B′

22



 (A.3)

A.1.4 Planar honeycomb

W1 = 3k1
2 + 3k2 − 3k2 cos

(3aqx

2

)
cos

(√
3aqy

2

)

W2 =
√

3k2 sin
(3aqx

2

)
sin

(√
3aqy

2

)
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W3 = k1



− exp (iaqx) −
exp

(
− iaqx

2

)
cos

(√
3aqy

2

)

2





W4 = k1
2

(√
3i exp

(
−iaqx

2

)
sin

(√
3aqy

2

))

W5 = 3k1
2 + 3k2 − 2k2 cos

(√
3aqy

)
− k2 cos

(3aqx

2

)
cos

(√
3aqy

2

)

W6 = k1
2

(

−3 exp
(

−iaqx

2

)
cos

(√
3aqy

2

))

D(q) =





W1 W2 W3 W4

W ∗
2 W5 W4 W6

W ∗
3 W ∗

4 W1 W2

W ∗
4 W ∗

6 W ∗
2 W5




(A.4)

A.1.5 Honeycomb with bond bending

W ′
1 = 3kb

W ′
2 = i

√
3kb exp

(
−3iqxa

2

)
sin

(√
3qya

2

)

W ′
3 = −3kb exp

(
−iqxa

2

)
cos

(√
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2

)

W ′
4 = −2i

√
3kb exp

(
−iqxa

2

)
sin

(√
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2

)
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W ′
5 = kb

(

7 + 2 cos
(3qxa

2

)
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(√
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2

))

W ′
6 = −3kb exp

(
−iqxa
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W ′
7 = −3kb



2 cos(qxa) + exp
(
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D(q) =
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1 W ′
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(A.5)

A.1.6 Kagome

M1 = k1 + 3k2

M2 = 0

M3 = −1
4k1 exp
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M5 = −1
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M7 = 3k1 + k2

M8 = −1
43k1 exp

(

−i
(aqx

4 +
√

3aqy

4
))

− 3
4k1 exp

(

−i
(
−aqx

4 −
√

3aqy

4
))

− 1
4k2 exp

(

−i
(
−3aqx

4 +
√

3aqy

4
))

− 1
4k2 exp

(

−i
(3aqx

4 −
√

3aqy

4
))

M9 = −1
43k1 exp

(

−i
(
−aqx

4 +
√

3aqy

4
))

− 3
4k1 exp

(

−i
(aqx

4 −
√

3aqy

4
))

− 1
4k2 exp

(

−i
(3aqx

4 +
√

3aqy

4
))

− 1
4k2 exp

(

−i
(
−3aqx

4 −
√

3aqy

4
))

M10 = 5k1
2 + 3k2

2

M11 =
√

3k1
2 −

√
3k2
2

M12 = −k1 exp
(
i
aqx

2
)
−k1 exp

(
−i

aqx

2
)

M13 = 3k1
2 + 5k2

2

M14 = −k2 exp
(
i

√
3aqy

2
)
−k2 exp

(
−i

√
3aqy

2
)
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M15 =
√

3k2
2 −

√
3k1
2

D(q) =





M1 M2 M3 M4 M5 M6

M∗
2 M7 M4 M8 M6 M9

M∗
3 M∗

4 M10 M11 M12 M2

M∗
4 M∗

8 M∗
11 M13 M2 M14

M∗
5 M∗

6 M∗
12 M∗

2 M10 M15

M∗
6 M∗

9 M∗
2 M∗

14 M∗
15 M13





(A.6)

A.1.7 SC

S11 = −2 cos (aqx) (k1 + k2 (cos (aqy) + cos (aqz))) + 2k1 + 4k2

S12 = 2k2 sin (aqx) sin (aqy) = S21

S13 = 2k2 sin (aqx) sin (aqz) = S31

S22 = −2 cos (aqy) (k1 + k2 (cos (aqx) + cos (aqz))) + 2k1 + 4k2

S23 = 2k2 sin (aqy) sin (aqz) = S32

S33 = −2 cos (aqz) (k1 + k2 (cos (aqx) + cos (aqy))) + 2k1 + 4k2

D(q) =





S11 S12 S13

S21 S22 S23

S31 S32 S33



 (A.7)
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A.1.8 BCC

G11 = −8
3k1 cos

(
aqx

2

)
cos

(
aqy

2

)
cos

(
aqz

2

)
− 2k2 cos (aqx) + 8

3k1 + 2k2

G12 = 8
3k1 cos

(
aqz

2

)
sin

(
aqx

2

)
sin

(
aqy

2

)
= G21

G13 = 8
3k1 cos

(
aqy

2

)
sin

(
aqx

2

)
sin

(
aqz

2

)
= G31

G22 = −8
3k1 cos

(
aqx

2

)
cos

(
aqy

2

)
cos

(
aqz

2

)
− 2k2 cos (aqy) + 8

3k1 + 2k2

G23 = 8
3k1 cos

(
aqx

2

)
sin

(
aqy

2

)
sin

(
aqz

2

)
= G32

G33 = −8
3k1 cos

(
aqx

2

)
cos

(
aqy

2

)
cos

(
aqz

2

)
− 2k2 cos (aqz) + 8

3k1 + 2k2

D(q) =





G11 G12 G13

G21 G22 G23

G31 G32 G33



 (A.8)

A.1.9 FCC

F11 = 4k1 + 2k2 − 2k2 cos (aqx) − 2k1 cos
(

aqx

2

)(
cos

(
aqy

2

)
+ cos

(
aqz

2

))

F12 = 2k1 sin
(

aqx

2

)
sin

(
aqy

2

)
= F21
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F13 = 2k1 sin
(

aqx

2

)
sin

(
aqz

2

)
= F31

F22 = 4k1 + 2k2 − 2k2 cos (aqy) − 2k1 cos
(

aqy

2

)(
cos

(
aqx

2

)
+ cos

(
aqz

2

))

F23 = 2k1 sin
(

aqy

2

)
sin

(
aqz

2

)
= F32

F33 = 4k1 + 2k2 − 2k2 cos (aqz) − 2k1 cos
(

aqz

2

)(
cos

(
aqx

2

)
+ cos

(
aqy

2

))

D(q) =





F11 F12 F13

F21 F22 F23

F31 F32 F33



 (A.9)

A.2 Strain correlation iso-surfaces for 3d lattices

We give below the equations for the iso-surfaces of the strain-strain correlation func-
tions for the 3d lattices as shown in Fig. 3.13. We have used the same notation as in
Section 3.3.

A.2.1 SC

The iso-strain surfaces are given by the equations β〈e2
v〉(q) = QSC

v /QSC = 1, β〈e2
u〉(q) =

QSC
u /QSC = 1.5 and β〈e2

s〉(q) = QSC
s /QSC = 3.6, where,

QSC = a2
[

k3
1q2

xq2
yq2

z + k2
1k2

(

q4
x

(
q2

y + q2
z

)
+q2

x

(
q4

y + 6q2
yq2

z + q4
z

)
+q2

yq2
z

(
q2

y + q2
z

))

+ k1k
2
2

(

q6
x + 5q4

x

(
q2

y + q2
z

)
+q2

x

(
5q4

y + 3q2
yq2

z + 5q4
z

)
+q6

y + 5q4
yq2

z + 5q2
yq4

z + q6
z

)

+ k3
2

(

2q6
x + 3q4

x

(
q2

y + q2
z

)
+q2

x

(
3q4

y + 8q2
yq2

z + 3q4
z

)
+2q6

y + 3q4
yq2

z + 3q2
yq4

z + 2q6
z

)]

,
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QSC
v = 3k2

1q2
xq2

yq2
z + 2k1k2

(

q4
x

(
q2

y + q2
z

)
+q2

x

(
q4

y + q4
z

)
+q2

yq2
z

(
q2

y + q2
z

))

+ k2
2

(

q6
x + q4

x

(
q2

y + q2
z

)
+q2

x

(
q4

y + 3q2
yq2

z + q4
z

)
+q6

y + q4
yq2

z + q2
yq4

z + q6
z

)

,

QSC
u = 3k2

1q2
xq2

yq2
z + 2k1k2

(

q4
x

(
q2

y + q2
z

)
+q2

x

(
q4

y + 8q2
yq2

z + q4
z

)
+q2

yq2
z

(
q2

y + q2
z

))

+ k2
2

(

q6
x + 9q4

x

(
q2

y + q2
z

)
+3q2

x

(
3q4

y + q2
yq2

z + 3q4
z

)
+q6

y + q4
yq2

z + q2
yq4

z + q6
z

)

,

QSC
s = k2

1q2
z

(
q4

x + q4
y

)
+k1k2

(

q6
x + q4

x

(
q2

y + 4q2
z

)
+q2

x

(
q2

y − q2
z

)2
+q2

y

(
q4

y + 4q2
yq2

z + q4
z

))

+ k2
2

(

2q6
x + q4

xq2
z + 2q2

x

(
3q2

yq2
z + q4

z

)
+2q6

y + q4
yq2

z + 2q2
yq4

z

)

.

(A.10)

A.2.2 BCC

The iso-strain surfaces are given by the equations β〈e2
v〉(q) = QBCC

v /QBCC = 1.6,
β〈e2

u〉(q) = QBCC
u /QBCC = 5.5 and β〈e2

s〉(q) = QBCC
s /QBCC = 2.15, where,

QBCC = a2
[

k3
1

(

− q4
z

(
q2

x + q2
y

)
+
(
q2

x − q2
y

)2(
q2

x + q2
y

)
−q2

z

(
q4

x − 10q2
xq2

y + q4
y

)
+q6

z

)

+ 3k2
1k2

(

q6
x + 3q4

x

(
q2

y + q2
z

)
+3q2

x

(
q2

y − q2
z

)2
+
(
q2

y + q2
z

)3
)

+ 9k1k
2
2
(
q2

x + q2
y + q2

z

)(

q2
x

(
q2

y + q2
z

)
+q2

yq2
z

)

+ 27k3
2q2

xq2
yq2

z

]

,

QBCC
v = 3k1

(
q2

x + q2
y

)(

6k2q
2
xq2

y + k1
(
q2

x − q2
y

)2
)

− 3
(

k1(k1 − 6k2)q4
x − 3

(
2k2

1 − 6k1k2 + 9k2
2
)
q2

xq2
y + k1(k1 − 6k2)q4

y

)

q2
z

− 3k1(k1 − 6k2)
(
q2

x + q2
y

)
q4

z + 3k2
1q6

z ,
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QBCC
u = 3

[

27k2
2q2

xq2
yq2

z + 6k1k2

(

q4
x

(
q2

y + q2
z

)
+q2

yq2
z

(
q2

y + q2
z

)
+q2

x

(
q4

y + 5q2
yq2

z + q4
z

))

+ k2
1

(

q6
x + 7q4

x

(
q2

y + q2
z

)
+
(
q2

y − q2
z

)2(
q2

y + q2
z

)
+q2

x

(
7q4

y − 10q2
yq2

z + 7q4
z

))]

,

QBCC
s = 3

[

9k2
2
(
q4

x + q4
y

)
q2

z + 3k1k2

(

q6
x + q2

x

(
q2

y − q2
z

)2
+q2

y

(
q2

y + q2
z

)2
+q4

x

(
q2

y + 2q2
z

))

+ k2
1

(

q6
x − q4

x

(
q2

y + 2q2
z

)
+
(
q3

y − qyq2
z

)2
+q2

x

(
−q4

y + 8q2
yq2

z + q4
z

))]

.

(A.11)

A.2.3 FCC

The iso-strain surfaces are given by the equations β〈e2
v〉(q) = QF CC

v /QF CC = 1.44,
β〈e2

u〉(q) = QF CC
u /QF CC = 3.6 and β〈e2

s〉(q) = QF CC
s /QF CC = 2.75, where,

QF CC = a2
[

k3
1

(

2q6
x + 3q4

x

(
q2

y + q2
z

)
+q2

x

(
3q4

y + 8q2
yq2

z + 3q4
z

)

+ 2q6
y + 3q4

yq2
z + 3q2

yq4
z + 2q6

z

)

+ 4k2
1k2

(

q6
x + 5q4

x

(
q2

y + q2
z

)

+ q2
x

(
5q4

y + 3q2
yq2

z + 5q4
z

)
+q6

y + 5q4
yq2

z + 5q2
yq4

z + q6
z

)

+ 16k1k
2
2

(

q4
x

(
q2

y + q2
z

)
+q2

x

(
q4

y + 6q2
yq2

z + q4
z

)
+q2

yq2
z

(
q2

y + q2
z

))

+ 64k3
2q2

xq2
yq2

z

]

,

QF CC
v = 4

[

k2
1

(

q6
x + q4

x

(
q2

y + q2
z

)
+q2

x

(
q4

y + 3q2
yq2

z + q4
z

)
+q6

y + q4
yq2

z + q2
yq4

z + q6
z

)

+ 8k1k2

(

q4
x

(
q2

y + q2
z

)
+q2

x

(
q4

y + q4
z

)
+q2

yq2
z

(
q2

y + q2
z

))

+ 48k2
2q2

xq2
yq2

z

]

,

QF CC
u = 4

[

k2
1

(

q6
x + 9q4

x

(
q2

y + q2
z

)
+3q2

x

(
3q4

y + q2
yq2

z + 3q4
z

)
+q6

y + q4
yq2

z + q2
yq4

z + q6
z

)

+ 8k1k2

(

q4
x

(
q2

y + q2
z

)
+q2

x

(
q4

y + 8q2
yq2

z + q4
z

)
+q2

yq2
z

(
q2

y + q2
z

))

+ 48k2
2q2

xq2
yq2

z

]

,

100 Appendix A Appendix A



QF CC
s = 4

[

k2
1

(

2q6
x + q4

xq2
z + 2q2

x

(
3q2

yq2
z + q4

z

)
+2q6

y + q4
yq2

z + 2q2
yq4

z

)

+ 4k1k2

(

q6
x + q4

x

(
q2

y + 4q2
z

)
+q2

x

(
q2

y − q2
z

)2
+q2

y

(
q4

y + 4q2
yq2

z + q4
z

))

+ 16k2
2q2

z

(
q4

x + q4
y

)]

.

(A.12)
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Appendix B
B

Dynamical matrix for non-affine interactions

We give below a detailed derivation of the dynamical matrix DX(q) used in Chapter 5.
Although the derivation presented here is specific to the square lattice, extension to
other lattices can be done in similar fashion. In the following, we use the notation
where the subscript represents particle indices and the component of vectors or the
matrices are denoted by superscripts.

The dynamical matrix, in Chapter 5 is defined as the Fourier transform of the second
derivative of the extended Hamiltonian HX = −hXX. Therefore, the components of
the dynamical matrix are,

Dµν
X (q) = −hX

∑

Ri

∂2X

∂uµ
i ∂uν

0
e−iq·(Ri−R0) (B.1)

where the lattice sum is extended over the reference set {Ri}. The global non-affinity
X is defined as the sum of the individual non-affine parameter χ at all the lattice sites,

X ≡
N∑

i

χi. (B.2)

It is often useful to split the above sum and pull out the non-affinity at a particular
lattice site 0 such that,

X = χ0 +
∑

i,i (=0
χi. (B.3)

For a given coarse-graining region Ω(0), non-affinity parameter χ0 is then given by
(Eq. (2.23))

χ0 = min
D

∑

j∈Ω(0)

2∑

α=1

[
(uα

j − uα
0 ) − Dα1

0 (R1
j − R1

0) − Dα2
0 (R2

j − R2
0)
]2

. (B.4)

Similarly for any other lattice site i,

χi = min
D

∑

j∈Ω(i)

2∑

α=1

[
(uα

j − uα
i ) − Dα1

i (R1
j − R1

i ) − Dα2
i (R2

j − R2
i )
]2

, (B.5)
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where we have expressed Eq. (B.4) and (B.5) in the component form. In order to find
derivatives of the each part of Eq. (B.3), one needs to express affine strain D in terms
of the particle displacements. We show below how to obtain elements of D for a square
lattice.

Elements of D

The minimisation of Eq. (B.4) and (B.5) yields best fit affine strain D whose elements
are given by Eq. (2.28),

Dαγ
0 = 1

∑
i∈Ω(0)(Rγ

i − Rγ
0)2

∑

i∈Ω(0)
(uα

i − uα
0 )(Rγ

i − Rγ
0) (B.6)

and
Dαγ

i = 1
∑

j∈Ω(i)(Rγ
j − Rγ

i )2
∑

j∈Ω(i)
(uα

j − uα
i )(Rγ

j − Rγ
i ) (B.7)

For the square lattice with lattice parameter a and the coarse-graining Ω consisting
nearest and next-nearest neighbours (see Fig. B.1), we find

∑

j∈Ω(i)
(Rγ

j − Rγ
i )2 =

∑

i∈Ω(0)
(Rγ

i − Rγ
0)2 = 6a2, for all γ.

Fig. B.1. Square lattice with tagged particles used to create coarse-grained set Ω. The pink
shaded region represents coarse-graining region around particle 0 with coordinates
R0 = (0, 0). The coarse-grained set Ω(0) consists nearest and next nearest neigh-
bours. Similarly, coarse-graining volume for particles is also constructed (see text).
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First derivative of D0:

Once the D0 is known as a function of displacements, derivatives can be evaluated
easily. Therefore, with Ω(0) = {1, 2, 3, 4, 5, 6, 7, 8} we get

∂Dαγ
0

∂uν
0

= 1
6a2

∂

∂uν
0




∑

i∈Ω(0)
(uα

i − uα
0 )(Rγ

i − Rγ
0 )




= −δαν
1

6a2




∑

i∈Ω(0)
(Rγ

i − Rγ
0 )




using the lattice symmetries
(
∑

i∈Ω(0)
(Rγ

i − Rγ
0 ) = 0

)

, we finally obtain

∂Dαγ
0

∂uν
0

= 0 (B.8)

First derivative of Di:

To evaluate the derivatives of Di, we note that i ,= 0 as required by Eq. (B.3). Further,
index i is not included in the coarse-grained set Ω(i). Thus, the first derivative of Di

takes the following form

∂Dαγ
i

∂uν
0

= 1
6a2

∂

∂uν
0




∑

j∈Ω(i)
(uα

j − uα
i )(Rγ

j − Rγ
i )




= 1
6a2

∑

j∈Ω(i)
δανδj0(Rγ

j − Rγ
i )

= 1
6a2 δαν(Rγ

0 − Rγ
i ) (B.9)

Derivatives of X

first derivative of X:

We are now in a position to find derivatives of global non-affinity X. From Eq. (B.3),
we have

∂X

∂uν
0

= ∂χ0
∂uν

0
+

N∑

i,i (=0

∂χi

∂uν
0
. (B.10)
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In the above equation, the derivatives of χi with respect to uν
0 is non-zero only for

i which correspond to the neighbours of 0. Therefore, the summation of i can be
restricted to i ∈ Ω(0),

∂X

∂uν
0

= ∂χ0
∂uν

0
+

∑

i∈Ω(0)

∂χi

∂uν
0
. (B.11)

With the help of Eq. (B.8) and Eq. (B.9), derivatives of χ0 and χi can be obtained

χ0 =
∑

i∈Ω(0)

2∑

α=1

[
(uα

i − uα
0 ) − Dα1

0 (R1
i − R1

0) − Dα2
0 (R2

i − R2
0)
]2

∂χ0
∂uν

0
=

∑

i∈Ω(0)

2∑

α=1
2δαν

(

−1 − (R1
i − R1

0)
!
!

!!∂Dα1
0

∂uν
0

− (R2
i − R2

0)
!
!

!!∂Dα2
0

∂uν
0

)

(using Eq. (B.8))

×
[
(uα

i − uα
0 ) − Dα1

0 (R1
i − R1

0) − Dα2
0 (R2

i − R2
0)
]

= −2
∑

i∈Ω(0)

[
(uν

i − uν
0) − Dν1

0 (R1
i − R1

0) − Dν2
0 (R2

i − R2
0)
]

= −2
∑

i∈Ω(0)
(uν

i − uν
0) + 2Dν1

0
""""""""∑

i∈Ω(0)
(R1

i − R1
0) + 2Dν2

0
""""""""∑

i∈Ω(0)
(R2

i − R2
0)

= −2
∑

i∈Ω(0)
(uν

i − uν
0) (B.12)

In the similar fashion,

∂χi

∂uν
0

= −2
[
(uν

i − uν
0) − Di

ν1(R1
i − R1

0) − Di
ν2(R2

i − R2
0)
]

. (B.13)

Upon substituting Eq. (B.12) and Eq. (B.13) in Eq. (B.11), first derivative of X is simply,

∂X

∂uν
0

= −2
∑

n∈Ω(0)

[
2 (uν

i − uν
0) − Dν1

i

(
R1

i − R1
0
)

− Dν2
i

(
R2

i − R2
0
)]

. (B.14)

Second derivative of X:

Calculation of the second derivative of X requires us to know elements of Di. There-
fore, given the following sets of coarse-graining volume (see Fig. B.1)

Ω(0) = {1,2,3,4,5,6,7,8}; Ω(1) = {10,11,2,3,0,7,8,9};
Ω(2) = {11,12,13,14,3,0,1,10}; Ω(3) = {2,13,14,15,4,5,0,1};
Ω(4) = {3,14,15,16,17,18,5,0}; Ω(5) = {0,3,4,17,18,19,6,7};
Ω(6) = {7,0,5,18,19,20,21,22}; Ω(7) = {8,1,0,5,6,21,22,23};
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Ω(8) = {9,10,1,0,7,22,23,24};

explicit expressions for Di in terms of particle displacements is obtained by using
Eq. (B.7)

Dαγ
i = 1

6a2
∑

j∈Ω(i)
(uα

j − uα
i )(Rγ

j − Rγ
i ) (B.15)

Substituting above expressions for all Di in Eq. (B.14) and using the position coordi-
nates of the lattice sites (see Fig.B.1),

hX
∂X

∂uν
0

= hX

[

28uν
0 − 16

3 (uν
1 + uν

3 + uν
5 + uν

7) − 4 (uν
2 + uν

4 + uν
6 + uν

8) (B.16)

+ 2
3(uν

9 + uν
11 + uν

12 + uν
13 + uν

15 + uν
16 + uν

17 + uν
19 + uν

20

+ uν
21 + uν

23 + uν
24) + 1

3 (uν
10 + uν

14 + uν
18 + uν

22)
]

.

Thus, another derivative of the above equation yields,

hX
∂2X

∂uµ
i uν

0
= hX

[

28δi0 − 16
3 (δi1 + δi3 + δi5 + δi7) − 4 (δi2 + δi4 + δi6 + δi8) (B.17)

+ 2
3(δi9 + δi11 + δi12 + δi13 + δi15 + δi16 + δi17 + δi19 + δi20

+ δi21 + δi23 + δi24) + 1
3 (δi10 + δi14 + δi18 + δi22)

]

δµν .

Components of the dynamical matrix

Assuming the reference position of particle R0 = (0, 0) in Fig. B.1, components of the
dynamical matrix are obtained by the lattice sum,

Dµν
X (q) = −hX

∑

Ri

∂2X

∂uµ
i ∂uν

0
e−iq·(Ri−R0) (B.18)

= −δµνhX

[

28δi0 − 16
3 (δi1 + δi3 + δi5 + δi7) − 4 (δi2 + δi4 + δi6 + δi8)

+ 2
3(δi9 + δi11 + δi12 + δi13 + δi15 + δi16 + δi17 + δi19 + δi20

+ δi21 + δi23 + δi24) + 1
3 (δi10 + δi14 + δi18 + δi22)

]

e−iq·Ri0
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Dνµ
X (q) = −2hX

[

14 − 16
3 (cos(qxa) + cos(qya)) − 8 (cos(qxa) cos(qya))

+ 4
3 (cos(2qxa) cos(qya) + cos(qxa) cos(2qya) + cos(2qxa) cos(2qya))

+ 1
3 (cos(2qxa) + cos(2qya))

]

δµν

= 2hXAXδµν (B.19)

Dynamical matrix corresponding to HX

DX(q) = 2hX



 AX 0
0 AX





Also note that in the limit q → 0, the leading order of AX ∼ q4. Explicitly,

lim
qx,qy→0,0

AX ∼ −3hX

(
qx4 + 4qx2qy2 + qy4

)
+ ...

This completes the derivation of the dynamical matrix DX(q) for the square lattice.
A similar calculation can be done for other lattices as well. For all lattices such as trian-
gular, honeycomb, and kagome we find that DX(q) ∼ q4 for small wave-numbers.
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